COMUNE DI FRONT

COSTRUZIONE DI PASSERELLA PEDONALE **SUL TORRENTE MALONE**

PROGETTO ESECUTIVO

Tavola:

Relazione specialistica di calcolo strutture in elevazione

prog. architettonico

STUDIO VIESSE Ingegneri associati

ing. Mario Vaudagna, ing. Stefano Vaudagna via Silvio Pellico 12, 10073 CIRIE (To)

tel./fax. 0119212229 e-mail: info@studioviesse.it

prog. strutturale:

ing. Alberto Goio, ing. Alessandro B

C.so Principe Oddone 70, 10152 TORINO tel. 0118996040 e-mail: info@ipeprogetti.it

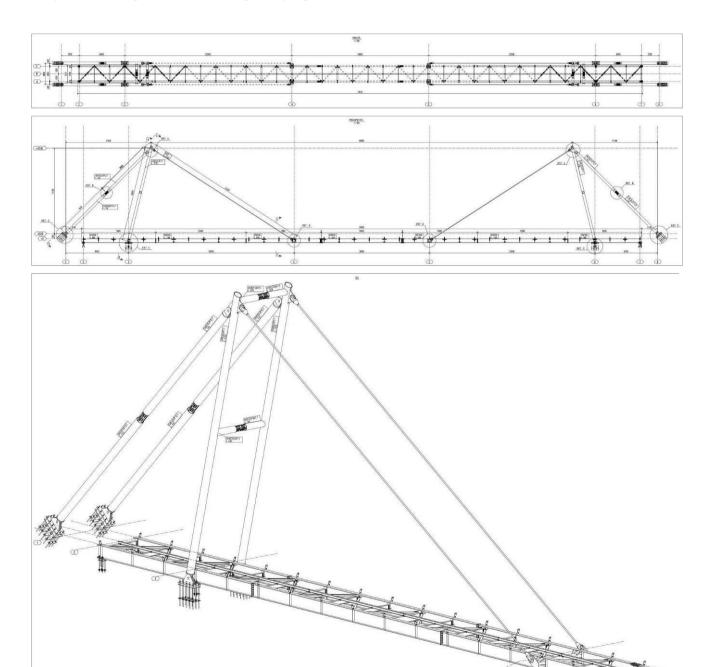
REV.	DATE / DATA	DESCRIPTION / DESCRIZIONE
00	Novembre 2019	Prima Emissione

INDICE

INDI	CE		
1.]	INTRO	DUZIONE	4
1.1	. ELA	BORATI GRAFICI	5
1.2	. NOF	MATIVA DI RIFERIMENTO	5
1.3	. COE	DICI DI CALCOLO	5
-	1.3.1.	Software per l'analisi strutturale	5
	1.3.2.	Software per l'analisi e le verifiche strutturali delle parti in acciaio	5
	1.3.3.	Software per le verifiche dei giunti	6
-	<i>1.3.4.</i>	Software per le verifiche delle opere di fondazione e in calcestruzzo	6
1.4	. UNI	TÀ DI MISURA	7
1.5	. SIS	TEMA DI COORDINATE SPAZIALI	7
-	1.5.1.	Sistema di riferimento globale	7
1.6	. PRC	PRIETÀ MECCANCIHE DEI MATERIALI	8
-	1.6.1.	Acciaio strutturale S355 J2/J0	8
-	1.6.2.	Bulloni 10.9 classe HV	8
•	1.6.3.	Bulloni 8.8	8
•	1.6.4.	Funi di sospensione	8
2. I	DESCR:	ZIONE DELLA STRUTTURA	9
2.1	. STR	ALLI E TESATURA	10
2.2	. GRI	GLIATO	11
2.3	. ANC	ORAGGI CON IL CEMENTO ARMATO	12
	2.3.1.	Appoggi dell'impalcato	12
•	2.3.2.	Appoggi del sistema stralli	12
3. (CARIC	łI	13
3.1	. CAR	ICHI PERMANENTI	13
3.2	. CAR	ICHI VARIABILI	14
	3.2.1.	Carico di folla compatta – Schema n.5	14
	3.2.2.	Neve	14
	3.2.3.	Vento	<i>15</i>
	<i>3.2.4.</i>	Carico termico	<i>15</i>
3.3	. AZI	ONE SISMICA	16
	3.3.1.	Stato Limite di Danno (SLD)	18
	3.3.2.	Stato Limite di salvaguardia della Vita (SLV)	19
3.4	. CON	IBINAZIONE DELLE AZIONI E VERIFICA ALLO STATO LIMITE	20
	3.4.1.	Verifica agli SLU	20
	3.4.2.	Verifica agli SLE	20
	3.4.3.	Verifica agli SLV e agli SLD	21

4.	DE	SCRIZ	IONE DEL MODELLO FEM	22
	4.1.	MODE	ELLAZIONE DEI MATERIALI	22
	4.2.	SCHE	MATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	22
	4.3.	SCHE	MATIZZAZIONE DELLE AZIONI	22
	4.4.	TIPO	DI ANALISI	22
	4.5.	IPOTE	ESI DI VERIFICA DELLE ASTE IN ACCIAIO	23
	4.5	5.1.	Verifiche di resistenza	23
	4.5	5.2.	Verifiche di stabilità	24
	4.6.	ANAL	ISI SISMICA	26
	4.7.	SCHE	MA DELLA STRUTTURA E DEI VINCOLI	27
	4.7	7.1.	Numerazione dei nodi	27
	4.7	7.2.	Numerazione delle aste	28
	4.8.	CARA	TTERISTICHE DEGLI ELEMENTI TRAVE	29
	4.8	3.1.	Schema delle proprietà del modello	29
	4.8	3.2.	Proprietà geometriche delle sezioni	29
	4.8	3.3.	Proprietà inerziali delle sezioni	31
	4.8	3.4.	Dati delle aste	31
	4.8	3.5.	Attributi di instabilità	<i>35</i>
5.	VE	RIFIC	HE DI RESISTENZA E STABILITÀ DELLA STRUTTURA	38
	5.1.	VERIF	TCA DEGLI ELEMENTI STRUTTURALI - SLU	38
	5.1	!.1.	Sommario di verifica delle proprietà	<i>38</i>
	5.1	1.2.	Verifica delle singole aste	38
	5.1	1.3.	Verifica prop. 1	<i>42</i>
	5.1	1.4.	Verifica prop. 2	<i>47</i>
	5.1	1.5.	Verifica prop. 3	<i>52</i>
	5.1	1.6.	Verifica prop. 5	<i>57</i>
	5.1	1.7.	Verifica prop. 13	60
	5.1	1.8.	Verifica prop. 18	<i>65</i>
	5.1	1.9.	Verifica prop. 19	70
	5.1	1.10.	Verifica prop. 20	<i>74</i>
	5.1	!.11.	Verifica prop. 21	80
	5.2.	VERIF	TICA PORTATA DEGLI STRALLI	82
	5.3.	VERIF	FICA DEI NODI	83
	5.3	3.1.	Verifica Giunzione a croce del tirante passivo	83
	5.3	3.2.	Verifica Giunzione a croce del traverso del portale	<i>85</i>
	5.3	3.3.	Verifica giunzione controvento singolo	<i>87</i>
	5.3		,,	89
	5.3	3.5.	Verifica appoggio dell'impalcato con taglio longitudinale	91
	5.3			93
	5.3		· · ·	95
	5.3		<u> </u>	97
	5.3	3.9.	Verifica giunto di continuità IPE550 – giunto/coprigiunto	10

5.3.10.	Verifica perno	123
6. VERIFI	CA DEGLI SPOSTAMENTI	124
6.1. SPC	STAMENTI SLE	124
6.1.1.	Spostamento verticale	124
6.1.2.	DZ tesatura cavi	124
6.1.3.	DZ carico SLE FULL	125
6.1.4.	DZ totale percepito	125
6.1.5.	Spostamenti Dy per effetto del vento	125
6.1.6.	Spostamenti DX per effetto della temperatura	126
6.2. VER	IFICA EFFETTI DINAMICI	127
6.2.1.	Verifica frequenza di vibrazione per carico pedonale	127
6.2.2.	Verifica fenomeno del fluttering	128
7. INTER	FACCE CON LE FONDAZIONI	129
7.1. REA	ZIONI VINCOLARI NEL SISTEMA DI RIFERIMENTO GLOBALE	129
7.1.1.	Pianta nodi	129
7.1.2.	Reazioni vincolari per casi di carico	129
7.1.3.	Reazioni vincolari SLE	131
7.1.4.	Reazioni vincolari SLU	136
7.1.5.	Reazioni vincolari Casi sismici	140
7.2. VER	IFICA DEI GIUNTI DI BASE	147
7.2.1.	Verifica attacco tirante posteriore	147
7.2.2.	Verifica piastra base portale	154
7.2.3.	Verifica appoggi impalcato vincolati a traslazioni orizzontali lato cls	167
7.2.4.	Verifica appoggi impalcato svincolati a traslazioni orizzontali lato cls	172


1. INTRODUZIONE

La presente relazione descrive le scelte progettuali, i dati di input e le verifiche delle strutture costituenti una passerella strallata ciclopedonale e le sue opere di fondazione.

Il manufatto in oggetto fa parte di un più ampio progetto di ampliamento dei percorsi ciclabili e pedonali all'interno della Riserva Naturale del Parco della Vauda e serve per l'attraversamento del torrente Malone in adiacenza al ponte carrabile esistente al km 12.550 della s.p.13.

Si tratta di una passerella di 74 m di lunghezza a campata unica strallata di luce netta 62 m e 1.90 m larghezza.

Si riportano di seguito alcune immagini di progetto.

CONSIDERAZIONI PRELIMINARI

1.1. ELABORATI GRAFICI

Questo documento fa riferimento agli elaborati grafici riportati sull'elenco elaborati alla presente allegato.

1.2. NORMATIVA DI RIFERIMENTO

L'analisi della struttura in oggetto verrà condotta utilizzando i metodi usuali della Scienza delle Costruzioni ed in conformità alle normative e leggi vigenti in Europa:

- D.M. 14 gennaio 2018: Nuove Norme Tecniche Per le Costruzioni;
- Circolare Esplicativa 21 gennaio 2019 n°7/C.S.LL.PP: Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni;
- UNI FNV 1991-1-4 Furocodice 1: Azioni sulle strutture.
- UNI ENV 1993-1-1 Eurocodice 3: Progettazione delle strutture di acciaio.
- UNI ENV 1993-1-8 Eurocodice 2: Progettazione delle strutture in calcestruzzo

1.3. CODICI DI CALCOLO

1.3.1. Software per l'analisi strutturale

1.3.2. Software per l'analisi e le verifiche strutturali delle parti in acciaio

La modellazione agli elementi finiti è stata condotta utilizzando il programma di calcolo: STRAUS7[®], versione 2.3.7, concepito e sviluppato dalla G+D Computing di Sidney, Australia e distribuito in Italia dalla HSH S.r.l, via Tommaseo 13, 35131 Padova.

Questo programma permette l'analisi statica non lineare di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore F.E.M.

Le verifiche strutturali sono state condotte con il programma Ludi3, post-processore di verifica collegato con STRAUS7[®] capace di valutare la resistenza e la stabilità di elementi in acciaio in ottemperanza dell'Eurocodice 3.

1.3.3. Software per le verifiche dei giunti

Le verifiche dei giunti sono state condotte con il programma Autodesk Robot structural analysis professional 2018 capace di valutare la resistenza dei nodi standard in acciaio in ottemperanza dell'Eurocodice 3.

1.3.4. Software per le verifiche delle opere di fondazione e in calcestruzzo

Per il calcolo delle sollecitazioni e per la verifica di travi e pilastri in cemento armato si e' fatto ricorso all'elaboratore elettronico utilizzando il seguente programma di calcolo:

DOLMEN WIN (R), versione 19.0 del 2019 prodotto, distribuito ed assistito dalla CDM DOLMEN srl, con sede in Torino, Via Drovetti 9/F.

Questa procedura è sviluppata in ambiente Windows, ed e' stata scritta utilizzando i linguaggi Fortran e C. DOLMEN WIN permette l'analisi elastica lineare di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono la trave, con eventuali svincoli interni o rotazione attorno al proprio asse, ed il guscio, sia rettangolare che triangolare, avente comportamento di membrana e di piastra. I carichi possono essere applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. I vincoli sono forniti tramite le sei costanti di rigidezza elastica.

A supporto del programma e' fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

1.4. UNITÀ DI MISURA

Le unità di misura utilizzate, dove non espressamente specificato vanno intese come di seguito:

Lunghezza: m Tempo: S Mass: kg Forza: kN Tensione: MPa Momenti: kNm m² Area: Modulo elastico/plastico: m³ Momento d'inerzia: m^4 Sezioni trasversali: m²

1.5. SISTEMA DI COORDINATE SPAZIALI

1.5.1. Sistema di riferimento globale

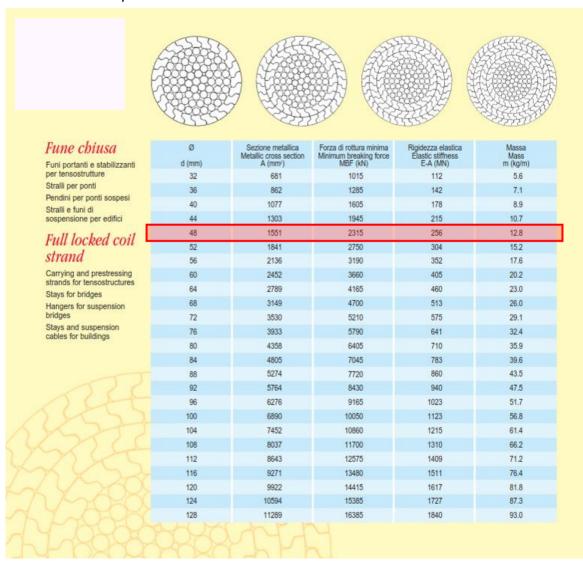
- Asse X: Lungo l'asse longitudinale del ponte
- Asse Y: Direzione trasversale
- Asse Z: Direzione verticale ("+" dal suolo verso il cielo)

1.6. PROPRIETÀ MECCANCIHE DEI MATERIALI

Le proprietà meccaniche successive vengono usate nei calcoli.

1.6.1. Acciaio strutturale S355 J2/J0

- Resistenza ultima $f_{tk} = 510 \quad N/mm^2$ - Tensione di snervamento $f_{yk} = 355 \quad N/mm^2$ - Modulo di elasticità (valore medio) $E_{sm} = 210 \quad kN/mm^2$


1.6.2. Bulloni 10.9 classe HV

- Resistenza ultima $f_{ub} = 1000 \quad N/mm^2$ - Tensione di snervamento $f_{yb} = 900 \quad N/mm^2$

1.6.3. Bulloni 8.8

- Resistenza ultima $f_{tb} = 800 \text{ N/mm}^2$ - Tensione di snervamento $f_{vb} = 640 \text{ N/mm}^2$

1.6.4. Funi di sospensione

2. DESCRIZIONE DELLA STRUTTURA

La passerella in progetto è in carpenteria metallica con schema a campata unica strallata e consente l'attraversamento dell'alveo del torrente Malone con distanza netta tra le sponde pari a 61.0m garantendo promiscuità di traffico pedonale con quello ciclabile grazie ad una sede viabile di larghezza 1,90 metri.

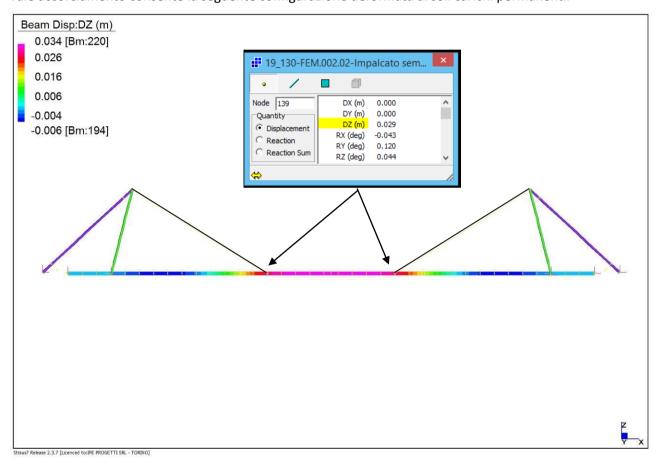
L'impalcato è costituito da 2 travi portanti longitudinali IPE550 di bordo reggenti un'orditura di travi trasversali IPE180 alternate a IPE300 con funzione portante verticale ed irrigidente del piano bloccando alla torsione le travi di bordo. È presente anche una controventatura di piano a bielle tese/compresse in UPN80 singoli o doppi accoppiati in funzione del loro impegno statico. Longitudinalmente è prevista anche una trave HEA100 rompitratta sorretta dalle IPE trasversali per dare idoneo sostegno al grigliato portante pedonabile.

L'impalcato appoggia sulle spalle di sponda con interasse teorico di 62m e prosegue sul terreno limitrofo a bordo alveo per altri 6 m per parte prevedendo altre due coppe di appoggi. In campata sono presenti due traverse molto rigide tubolari aggettanti verso l'esterno del ponte a cui sono agganciate 2 coppie di stralli a fune tesata con diametro di 48mm che suddividono la luce in 3 campate di 22/18/22 m. Tali funi sono ancorate in sommità ad una coppia di portali trasversali alti 12m aggettanti verso l'alveo e controbilanciati da due coppie di tiranti passivi tubolari inclinati di 45° che riportano il carico in fondazione oltre al limite dell'implacato.

Gli appoggi dell'impalcato sono ideati in modo da consentire le dilatazioni termiche longitudinali ed impedirne effetti iperstatici nelle due direzioni orizzontali.

Tutte le strutture in acciaio appoggiano sopra due basamenti in calcestruzzo (uno per sponda) direttamente appoggiati sul terreno e gettati in opera costituiti da una spalla profonda in corrispondenza del bordo alveo (a ripristino dell'argine) su cui poggiano i portali trasversali e la campata centrale dell'impalcato e da una parte più superficiale che si estende verso il terreno a bordo alveo per circa 10m su cui sono ancorati i tiranti posteriori e la parte restante dell'impalcato.

2.1. STRALLI E TESATURA


Gli stralli sono delle funi chiuse in acciaio armonico Ø48mm dotati di capocorda fisso all'estremità superiore e regolabile all'estremità inferiore.

Nel calcolo sono stati inseriti degli accorciamenti in modo da dare una pretensione all'elemento e ingenerare una deformazione impressa nell'impalcato al fine di contrastare la freccia legata ai carichi permanenti.

Di seguito si riporta l'accorciamento imposto allo strallo in fase di costruzione.

Lunghezza teorica:22.364 mmLunghezza imposta:22.340 mmAccorciamento imposto:24 mm

Tale accorciamento consente la seguente configurazione deformata ai soli carichi permanenti.

Si registra un sollevamento dell'impalcato in corrispondenza degli agganci degli stralli pari a 29mm

2.2. GRIGLIATO

- D.M. 14 gennaio 2008 3.1.4 tabella 3.1.II Categoria E
- Carico dinamico 600 daN/m²
- Materiale acciaio S235JR Sigma snervamento= 23,5 daN/mm² Sigma confronto= 22,38 daN/mm²
- Freccia max. 5 mm
- Freccia max. 1/200 di Ln

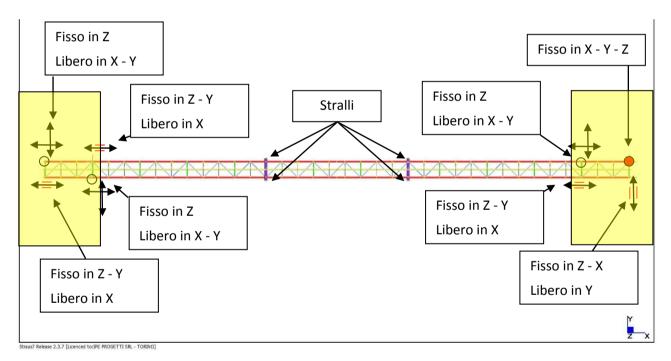
Tabella parte 1

			Interasse barre portanti (mm)																		
		1	1	1	5	17	7	2	2	25	5	3	0	3	3	3	4	4	4	66	6
							Ln	= luce n	etta mas	sima tra	gli appo	ggi (mm)	- <i>f</i> = fre	eccia elas	ccia elastica (mm)						
		Ln	f	Ln	f	Ln	f	Ln	f	Ln	f	Ln	f	Ln	f	Ln	f	Ln	f	Ln	f
	20 x 2	1129	5,00	1045	5,00	1013	5,00	933	4,65	894	4,46	842	4,21	815	4,06	807	4,02	741	3,70	633	2,96
_	25 x 2	1335	5,00	1235	5,00	1197	5,00	1123	5,00	1087	5,00	1039	5,00	1014	5,00	1007	5,00	926	4,62	792	3,71
	30 x 2	1531	5,00	1417	5,00	1373	5,00	1287	5,00	1247	5,00	1191	5,00	1163	5,00	1154	5,00	1082	5,00	950	4,44
	35 x 2	1718	5,00	1590	5,00	1541	5,00	1445	5,00	1400	5,00	1337	5,00	1306	5,00	1296	5,00	1215	5,00	1098	5,00
_	40 x 2	1900	5,00	1758	5,00	1704	5,00	1597	5,00	1547	5,00	1478	5,00	1443	5,00	1432	5,00	1343	5,00	1214	5,00
anti	45 x 2	2075	5,00	1920	5,00	1861	5,00	1745	5,00	1690	5,00	1615	5,00	1577	5,00	1565	5,00	1467	5,00	1326	5,00
port	50 x 2	2246	5,00	2078	5,00	2014	5,00	1888	5,00	1829	5,00	1747	5,00	1706	5,00	1694	5,00	1588	5,00	1435	5,00
9	25 x 3	1478	5,00	1367	5,00	1325	5,00	1242	5,00	1203	5,00	1150	5,00	1123	5,00	1114	5,00	1045	5,00	926	4,62
pa	30 x 3	1694	5,00	1568	5,00	1519	5,00	1425	5,00	1380	5,00	1318	5,00	1287	5,00	1278	5,00	1198	5,00	1082	5,00
e e	35 x 3	1902	5,00	1760	5,00	1706	5,00	1599	5,00	1549	5,00	1480	5,00	1445	5,00	1434	5,00	1345	5,00	1215	5,00
Sezione	40 x 3	2102	5,00	1945	5,00	1885	5,00	1768	5,00	1712	5,00	1636	5,00	1597	5,00	1585	5,00	1486	5,00	1343	5,00
0.5	45 x 3	2296	5,00	2125	5,00	2060	5,00	1931	5,00	1870	5,00	1787	5,00	1745	5,00	1732	5,00	1624	5,00	1467	5,00
	50 x 3	2485	5,00	2300	5,00	2229	5,00	2090	5,00	2024	5,00	1934	5,00	1888	5,00	1874	5,00	1757	5,00	1588	5,00
	60 x 3	2850	5,00	2637	5,00	2556	5,00	2396	5,00	2321	5,00	2217	5,00	2165	5,00	2149	5,00	2015	5,00	1821	5,00
	70 x 3	3199	5,00	2960	5,00	2869	5,00	2690	5,00	2605	4,99	2489	5,00	2430	5,00	2412	5,00	2262	5,00	2044	5,00
	80 x 3	3536	5,00	3272	5,00	3171	5,00	2973	5,00	2880	5,00	2751	5,00	2687	5,00	2667	5,00	2500	5,00	2259	5,00

Il grigliato scelto è costituito da lamelle 30x2 con orditura 17x76

Il grigliato scelto garantisce la paortata utile di 6 kN/mq su una luce massima pari a 1373mm. Risulta quindi idoneo a sopportare il carico di progetto su una luce massima pari a 1000mm.

2.3. ANCORAGGI CON IL CEMENTO ARMATO


L'impalcato appoggia su blocchi in c.a. posti alle estremità dell'attraversamento con funzione di spalla e argine del torrente. Oltre alla campata centrale che appoggia direttamente sulla spalla sono presenti anche due campate esterne in continuità che si estendono oltre l'argine per ulteriori 6.0m per parte appoggiando a fine campata. Si individuano pertanto 4 appoggi per ciascun lato dell'impalcato.

In corrispondenza degli appoggi della campata centrale sono presenti anche i punti di ancoraggio del portale delegato a sorreggere gli stralli e i tiranti. Oltre le estremità dell'impalcato si collocano inoltre gli ancoraggi dei tiranti passivi posteriori che trovano allettamento in 4 costole rilevate con inclinazione concorde con i tiranti stessi.

2.3.1. Appoggi dell'impalcato

L'impalcato è costituito da 2 travi continue su 4 appoggi solidi e 2 appoggi cedevoli rappresentati dagli stralli. Gli appoggi rigidi sono stati ideati con opportuni gradi di svincolo longitudinale e trasversale in modo da non creare effetti iperstatici e consentire dilatazioni termiche libere.

Di seguito si riporta lo schema degli svincoli a traslazione.

Sul lato destro sono presenti gli unici due vincoli in direzione longitudinale e lungo l'impalcato si alternano vincoli liberi in entrambe le direzioni o solo longitudinalmente.

Lo svincolo è stato garantito progettando appoggi dotati di saponette di teflon che garantiscono spostamenti reciproci tra le piastre di ancoraggio a terra e le travi dell'impalcato asolando in modo opportuno i fori delle bullonature.

2.3.2. Appoggi del sistema stralli

Il sistema stralli è costituito da 2 portali incernierati alla base con funzione di antenne e da due coppie di tiranti passivi incernierati agli estremi (bielle) con funzione di controbilanciamento del tiro degli stralli costituiti invece da funi in acciaio armonico e tesati opportunamente per esigenze di deformazione.

3. CARICHI

Tutti i carichi agenti sulla struttura sono considerati e raggruppati assieme in funzione della loro variabilità temporale: azioni permanenti e azioni variabili.

I seguenti carichi risultano agenti sulla struttura:

- Carichi permanenti (G)
 - o Peso proprio della struttura;
 - Peso proprio del piastrame, dei parapetti e dei grigliati;
 - o Tiro delle funi portanti (inserito come accorciamento della fune)
- Carichi variabili (Q)
 - o Azione del traffico schema di carico n5 folla compatta
 - Azione del vento;
 - o Carico neve/ghiaccio trascurato poiché di entità e impegno statico inferiore della folla;
 - o Carico termico
- Azione sismica

3.1. CARICHI PERMANENTI

Il peso proprio dagli elementi in acciaio modellati viene calcolato automaticamente dal software col peso specifico del materiale.

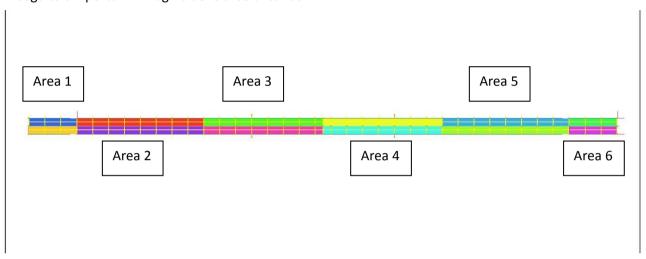
Come grigliato di calpestio si è scelto un grigliato 17x76 con barre 30x2 il cui peso è stimato come in tabella.

	15x76	17x76	22x38	22x76	25x25	25x76	30x50	30x100	34x38	34x76
hxs	Tondo	Tondo	Tondo	Tondo	Tondo	Tondo	Quadro	Quadro ritorto	Quadro ritorto	Quadro
20 x 2	24,4	21,8	18,8	17,5	31,3	15,8	14,7	13,4	14,1	12,5
25 x 2	30,1	26,9	22,9	21,5	36,6	19,4	17,7	16,5	16,8	15,2
30 x 2	35,9	31,9	26,9	25,5	47,0	23,1	20,8	19,5	19,5	17,9
40 x 2	47,4	42,1	34,9	33,6	57,4	30,3	26,8	25,6	24,9	23,3
45 x 2	53,1	47,2	38,9	37,6	67,8	33,9	29,9	28,6	27,7	26,0
50 x 2	58,8	52,3	42,9	41,6	78,2	37,5	32,9	31,6	30,4	28,7
25 x 3	43,6	38,8	32,6	30,9	88,6	27,8	25,1	23,5	23,6	21,5
30 x 3	52,0	46,1	38,4	36,7	41,2	33,0	29,4	27,8	27,5	25,4
40 x 3	68,7	60,9	50,0	48,3	48,1	43,4	38,1	36,5	35,2	33,1
50 x 3	85,4	75,7	61,6	59,9	61,9	53,9	46,8	45,3	43,0	40,9
60 x 3	102,1	90,4	73,2	71,5	75,8	64,3	55,6	54,0	50,7	48,6
70 x 3	118,8	105,2	84,9	83,2	89,6	74,7	64,3	62,7	58,4	56,4
80 x 3	135,5	120,0	96,5	94,8	103,4	85,1	73,0	71,4	66,2	64,1

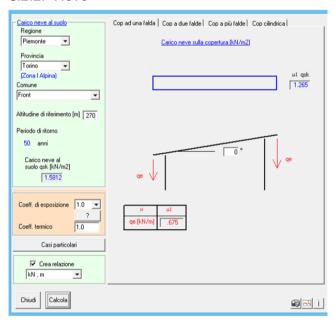
Il peso del piastrame e del grigliato di calpestio sono stati inseriti con un carico di superficie mentre il carico del parapetto come carico di linea con i seguenti valori:

 q_{perm} = 0.4 kN/mq $q_{parapetto}$ = 0.3 kN/m

3.2. CARICHI VARIABILI


3.2.1. Carico di folla compatta - Schema n.5

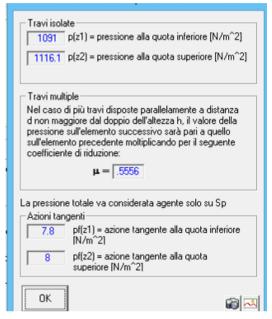
In base a quanto prescritto dalla normativa in merito a ponti pedonali come quello in oggetto, si applica lo schema di carico n.5 che prevede un carico uniforme su tutta la superficie pari a:


$$q_{var} = 5.0 \text{ kN/mq}$$

tale carico è stato applicato sull'impalcato suddividendolo per aree in funzione degli appoggi e delle linee di influenza per poterne massimizzare gli effetti sulle travi continue. È stata prevista anche una suddivisione in senso longitudinale per poter simulare casi di carico asimmetrici massimizzando gli sbilanciamenti e le torsioni dell'impalcato.

Di seguito si riporta l'immagine delle aree di carico.

3.2.2. Neve



Il carico neve da calcolo risulta pari a 1.265 kN/mq e data l'entità, sensibilmente inferiore al carico folla, viene omesso dalle combinazioni massimizzanti utilizzate per le verifiche.

3.2.3. Vento

Relativamente alle azioni del vento si è fatto riferimento sia a quanto definito sia nel D.M 14 gennaio 2018 sia a quanto indicato nel Eurocodice 1 – parte 4. In quest'ultimo si applica l'approccio globale individuando l'azione del vento sull'intera struttura in conformità al paragrafo 7.11 della suddetta norma e porta a un coefficiente di forza globale volto a valutare la quantità totale di vento che agisce sull'impalcato.

I valori calcolati sono i seguenti:

q vento trave esposta = 1.1 kN/m q vento trave affiancata = 0.6 kN/m

Cautelativamente si è scelto di applicare un carico uniforme su entrambe le travi di bordo pari a 1.0 kN/m.

Analogamente per quanto riguarda i portali di sostegno degli stralli, analizzando gli effetti del vento su elementi con sezione circolare di diametro 323mm è stato applicato un carico pari a

q tubo sopravento = 0.5 kN/m q tubo sottovento = 0.3 kN/m

3.2.4. Carico termico

In base a quanto prescritto dalla normativa in funzione della geolocalizzazione del manufatto sono stati applicati i seguenti delta termici:

DT+ = +20 °C DT- = -36 °C

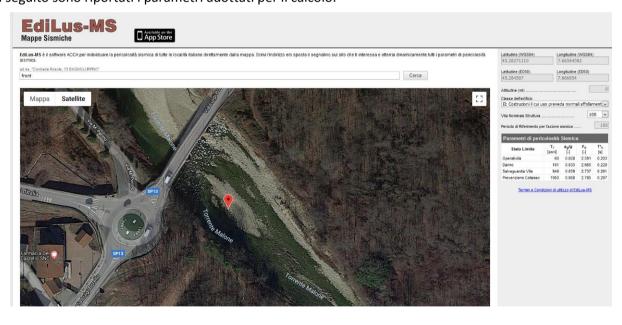
3.3. AZIONE SISMICA

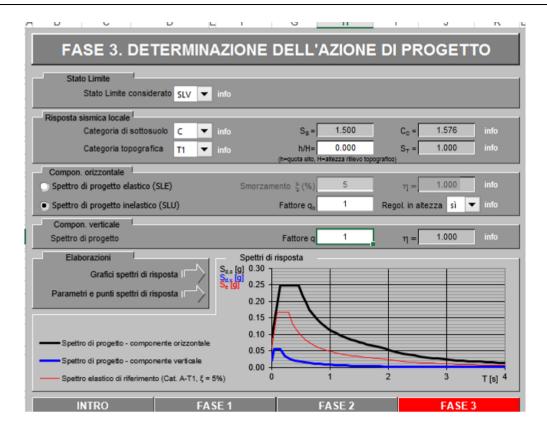
Al fine della valutazione dell'azione sismica si considerano, secondo quanto indicato dalla normativa vigente, due forme spettrali:

per gli stati limite di esercizio lo Stato Limite di Danno (SLD)

 a seguito del terremoto la costruzione, nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti della azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature

per gli stati limite ultime lo Stato Limite di salvaguardia della Vita (SLV)

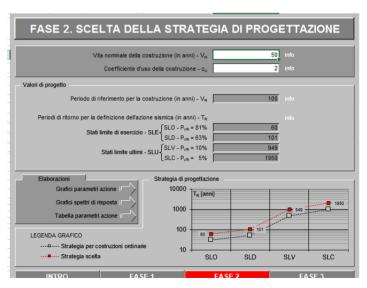

 a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti della azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali.


Le forme spettrali sono definite, per ciascuna probabilità di superamento del periodo di riferimento P_{Vr} , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima al sito;

F_o: valore massimo del fattore di amplificazione dello spettro di accelerazione orizzontale

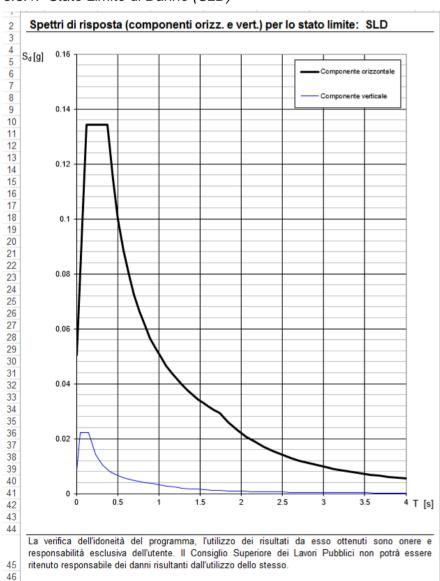
T*_C: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale Di seguito sono riportati i parametri adottati per il calcolo.



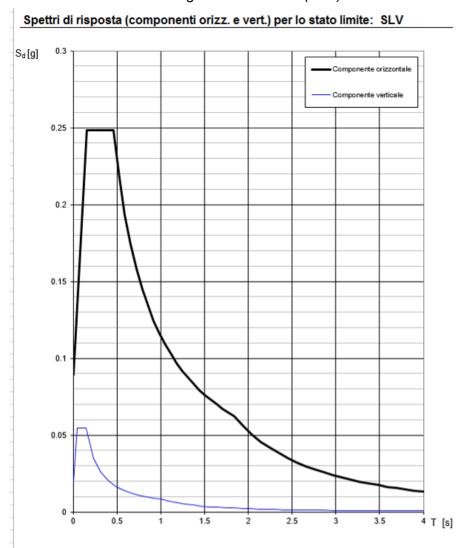
Valori dei parametri ag, Fo, Tc* per i periodi di ritorno TR di riferimento

T _R	ag	F _o	T _C *
[anni]	[g]	[-]	[s]
30	0.022	2.595	0.178
50	0.027	2.591	0.199
72	0.030	2.641	0.206
101	0.034	2.659	0.218
140	0.037	2.672	0.228
201	0.041	2.684	0.246
475	0.051	2.741	0.272
975	0.060	2.787	0.293
2475	0.073	2.903	0.295

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.



Valori dei parametri a_g, F_o, T_C per i periodi di ritorno T_R associati a ciascuno


SLATO	T _R	ag	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0.028	2.617	0.202
SLD	101	0.034	2.659	0.218
SLV	949	0.059	2.785	0.292
SLC	1950	0.069	2.873	0.295

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

3.3.1. Stato Limite di Danno (SLD)

3.3.2. Stato Limite di salvaguardia della Vita (SLV)

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

3.4. COMBINAZIONE DELLE AZIONI E VERIFICA ALLO STATO LIMITE

Le verifiche saranno effettuate agli stati limite di esercizio e agli stati limite ultimo. Le azioni agenti sono combinate in condizioni di carico tali da risultare più sfavorevoli ai fini della verifica, tenendo conto di ridotte probabilità di alcune combinazioni.

3.4.1. Verifica agli SLU

La verifica della sicurezza nei riguardi degli stati limite ultimi di resistenza si effettua con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale:

 $Rd \ge Ed$

• combinazione fondamentale:

dove per le situazioni persistenti e transitorie si adottano i seguenti valori

Tab. 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU(t)	A1	A2
Azioni permanenti \mathbf{g}_1 e \mathbf{g}_3	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Y _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	Υœ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	Ygı	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Ye1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Y 62 Y 639 Y 64	0,00 1,20	0,00 1,20	0,00 1,00

3.4.2. Verifica agli SLE

Le verifiche agli stati limite di esercizio riguardano le combinazioni riportate di seguito:

combinazione rara

• combinazione frequente

combinazione quasi-permanente

Tab. 5.1.VI - Coefficienti 🍿 per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi-	Coefficiente Ψ ₁ (valori	Coefficiente ψ ₂ (valori quasi
	F1 4/ 111 1 1 1	nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
. 1212	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

3.4.3. Verifica agli SLV e agli SLD

La verifica della sicurezza nei riguardi degli stati limite sismici SLV e SLD si effettua con il "metodo dei coefficienti parziali" di sicurezza espresso dalla equazione formale:

$$Rd \geq Ed \\$$

• combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

4. DESCRIZIONE DEL MODELLO FEM

4.1. MODELLAZIONE DEI MATERIALI

I materiali che costituiscono la struttura sono considerati con il comportamento lineare elastico ad esclusione degli stralli che sono stati modellati con apposito elemento "cable" con proprietà non lineari e simulazione diretta di catenaria.

Le proprietà di tutti gli elementi sono riportati nelle tabelle riepilogative dei paragrafi successivi.

4.2. SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La struttura è stata schematizzata escludendo il contributo degli elementi aventi rigidezza e resistenza trascurabili a fronte dei principali. E' quindi stata eseguita una modellazione tridimensionale di tutti gli elementi costituenti la struttura primaria e la struttura secondaria eccetto gli elementi dei parapetti che sono stati introdotti esclusivamente come carichi nodali e dei grigliati inseriti come carico di superficie.

Sono stati utilizzati esclusivamente elementi monidimensionali di tipo "beam" per le travi principali e secondarie e "truss" per gli elementi di controvento considerati reagenti anche a compressione. Gli stralli sono stati schematizzati con elementi "cable" con modulo elastico ridotto e comportamento non lineare.

I vincoli sono tutti di tipo puntuale e inseriti agendo sulle 6 costanti di rigidezza.

I carichi sono stati applicati mediante forze nodali o lineari su elementi trave e mediante aree di carico.

4.3. SCHEMATIZZAZIONE DELLE AZIONI

In accordo con le sopracitate normative, sono state considerate nei calcoli le seguenti azioni:

- Pesi propri strutturali;
- Carichi permanenti portati dalla struttura (grigliato e parapetto);
- Carichi variabili di esercizio (carico di traffico da ponte con schema n.5 folla compatta e vento)
- Carichi termici

Ciascuna azione viene caricata sulla struttura tramite:

- Massa propria dell'elemento calcolata in automatico dal software tramite applicazione del peso specifico;
- Carichi di linea per l'applicazione del peso del parapetto e del carico vento trasversale
- Carichi di superficie per l'applicazione del carico di traffico
- Delta termico sulle aste
- Combinazione quadratica degli auto vettori calcolati con analisi dinamica modale per i carichi sismici.

4.4. TIPO DI ANALISI

Tutte le strutture sono state calcolata adottando l'analisi statica non lineare per la determinazione delle sollecitazioni statiche e l'analisi dinamica modale per la determinazione delle sollecitazioni sismiche. Le sollecitazioni sismiche, una volta calcolate sono state caricate come forze nodali inerziali all'interno di specifici casi di carico per poterne poi performare l'analisi di tipo non lineare.

È stata considerata la non linearità sia geometrica sia del materiale per tenere in conto degli effetti della catenaria.

Il comportamento globale è verificato se i singoli corpi sono verificati. Il calcolo è stato eseguito secondo le normative sopra citate sfruttando principi delle scienze delle costruzioni.

4.5. IPOTESI DI VERIFICA DELLE ASTE IN ACCIAIO

4.5.1. Verifiche di resistenza

Le verifiche di resistenza seguono le indicazioni per il calcolo agli stati limite poste nel capitolo 6 dell'EC3-1-1.

Il criterio di verifica limita la sollecitazione esterna S_{Ed} ad essere inferiore a quella resistente: $S_{Ed}/S_{Rd} \le 1$. In particolare nel caso di sovrapposizione di sollecitazioni assiali e flettenti, è usata l'approssimazione a favore di sicurezza in cui i rapporti vengono sommati linearmente come da § 6.2.1(7):

$$\frac{N_{Ed}}{N_{Rd}} + \frac{M_{1,Ed}}{M_{1,Rd}} + \frac{M_{2,Ed}}{M_{2,Rd}} \le 1$$

I coefficienti di sicurezza utilizzati sono divisi per verifiche di resistenza e verifiche di instabilità. Nella NOTA 2B sono specificati i valori:

$$\gamma_{M0} = 1.05$$

$$\gamma_{\text{M1}} = 1.05$$

$$\gamma_{M2} = 1.25$$

Il limite ultimo raggiungibile per sezioni di classe 1 e 2 è la sezione completamente plasticizzata, mentre per le sezioni di classe 3 sono ammesse solo verifiche in campo elastico. Lo stato limite è quindi quello relativo al superamento del limite elastico nella fibra della sezione maggiormente sollecitata.

La resistenza ultima assiale, uguale per l'analisi elastica e plastica, è calcolata con la relazione:

$$N_{Rd} = N_{Rd,pl} = \frac{A \cdot f_y}{\gamma_{MO}}$$

Nella resistenza ultima flessionale il modulo di resistenza W è come quello plastico W_{pl} per le sezioni di classe 1 e 2 e quello elastico $W_{el,min}$ per le sezioni di classe 3.

Come da prescrizioni del § 6.2.8, la presenza di sforzi taglianti, superiori al 50% del valore resistente, è computata inserendo un coefficiente riduttivo nella tensione di snervamento del materiale:

$$f_{y,V} = (1 - \rho)$$

$$\rho = \left(\frac{2V_{Ed}}{V_{Dl} Pd} - 1\right)^{2}$$

e quindi:

$$M_{Rd} = M_{V,Rd} = \frac{W \cdot (1 - \rho)f_{y}}{\gamma_{M0}}$$

Le verifiche di resistenza al taglio (§ 6.2.6) sono differenziate tra il caso di sezioni di classe 1 e 2, per le quali è calcolato il rapporto massimo tra sollecitazioni agenti e resistenti, e le sezioni di classe 3, per le quali il coefficiente di sicurezza è calcolato come rapporto tensionale:

$$\frac{V_{Ed}}{V_{Pd}} \le 1$$

classi 1 e 2

$$\frac{\tau_{\text{Ed}}}{f_{\text{y}} \ / \! \left(\! \sqrt{3} \gamma_{\text{M0}} \right)} \, \leq \, 1$$

classe 3

in cui $V_{Rd} = V_{pl,Rd}$. Nel caso di copresenza di sollecitazioni torcenti sono applicati i coefficienti riduttivi prescritti al § 6.2.7(9).

Le verifiche a torsione (§ 6.2.7) sono eseguite calcolando le tensioni tangenziali nei punti significativi della sezione secondo le regole della Scienza delle Costruzioni.

In particolare, per sezioni aperte (Saint Venant):

$$\tau_{\text{T}} = \frac{\text{T} \cdot \text{s}}{\text{J}_{\text{t}}}$$

per sezioni chiuse (Bredt):

$$\tau_{\text{T}} = \frac{\text{T}}{2 \cdot \Omega \cdot \text{s}}$$

Nella ricerca della tensione tangenziale τ_{Ed} massima le tensioni derivanti dalla torsione sono sommate a quelle dovute agli sforzi taglianti.

$$\frac{\tau_{\text{V1,Ed}} + \tau_{\text{V2,Ed}} + \tau_{\text{T,Ed}}}{f_{\text{y}} / \left(\sqrt{3}\gamma_{\text{M0}}\right)} \leq 1$$

4.5.2. Verifiche di stabilità

Le verifiche di stabilità di elementi metallici compressi sono condotte seguendo le prescrizioni del \S 6.3 dell'Eurocodice3. La norma prevede di cautelarsi dagli effetti di sbandamento assiale nelle direzioni 1 e 2 e lo sbandamento flesso torsionale (LT = lateral torsional) tramite i coefficienti di riduzioni χ .

L'asta compressa è verificata se vengono soddisfatte le seguenti disuguaglianze:

$$\frac{N_{Ed}}{\chi_{1}N_{b,Rd}} + k_{yy} \frac{M_{1,Ed}}{\chi_{LT}M_{1,b,Rd}} + k_{yz} \frac{M_{2,Ed}}{M_{2,b,Rd}} \le 1$$

$$\frac{N_{Ed}}{\chi_{2}N_{b,Rd}} + k_{zy} \frac{M_{1,Ed}}{\chi_{LT}M_{1,b,Rd}} + k_{zz} \frac{M_{2,Ed}}{M_{2,b,Rd}} \le 1$$

dove:

N_{Ed}, M_{1,Ed} ed M_{2,Ed} sono le sollecitazioni massime sulla trave;

 $N_{b,Rd}$, $M_{b,1,Rd}$ ed $M_{b,1,Rd}$ sono le sollecitazioni resistenti calcolate con il coefficiente di sicurezza γ_{M1} ;

χ sono i coefficienti di riduzione per instabilità flessionale e torsionale;

 k_{yy} , k_{yz} , k_{zy} , k_{zz} sono i fattori di interazione. Ludi calcola tali fattori con entrambi i metodi (A e B) proposti dalla norma negli allegati.

Ai fini della verifica di un elemento compresso sono definiti i seguenti parametri di snellezza:

$$\lambda_1 = \ell_{0,1}/i_1$$
 $\lambda_2 = \ell_{0,2}/i_2$ $\lambda_{\theta} = \ell_{0,\theta}/i_{min}$

dove ℓ_0 è la lunghezza libera d'inflessione dell'elemento e i è il raggio d'inerzia della sezione trasversale.

Per definire i singoli coefficienti $^{\chi}$ è necessario calcolare la snellezza equivalente $^{\overline{\chi}}$ (funzione del carico critico) e il coefficiente $^{\Phi}$ (funzione del carico critico e dell'imperfezione del materiale α).

$$\overline{\lambda} = \sqrt{\frac{A \cdot f_y}{N_{cr}}} e \qquad \Phi = 0.5 \cdot \left[1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2 \right]$$

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \le 1$$

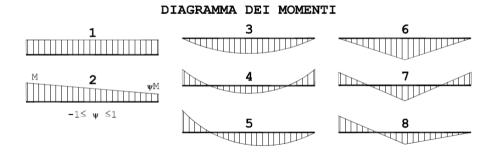
In maniera del tutto equivalente è calcolato il valore di $\mathcal{X}_{\mathtt{LT}}$:

nelle formule utilizzate, i coefficienti di imperfezione α e α_{LT} sono tabulati nelle tabelle 6.1 e 6.3 a seconda del tipo di acciaio e del tipo di sezione; i carichi critici sono calcolati con la nota relazione:

$$N_{cr} = \pi^2 \frac{EA}{\lambda^2}$$

Per il calcolo del M_{cr} l'Eurocodice non specifica un metodo di calcolo, si richiede soltanto che esso inglobi la reale distribuzione dei momenti ed i vincoli applicati alle estremità dell'asta. Nella presente relazione il momento critico è calcolato seguendo le indicazioni della normativa inglese BS 5950-2000 "Structural use of steelwork in building", in accordo alla relazione del paragrafo 4.3 "Lateral torsional buckling":

$$M_{cr} = \frac{p_b \cdot W}{m_{LT}}$$


dove p_b è la tensione di buckling, W è il modulo di resistenza elastico o plastico a seconda della classe della sezione, mLT è il coefficiente di equivalenza tra la trave sollecitata da momento costante e una distribuzione qualsiasi.

$$m_{LT} = 0.2 + \frac{0.15M_2 + 0.5M_3 + 0.15M_4}{M_{max}} \ge 0.44$$

in cui M_2 , M_3 , M_4 sono i momenti calcolati rispettivamente a $1/4\ell$, $1/2\ell$ e $3/4\ell$.

La tensione p_b è tabulata (BS 5950 table 16 e table 17) in funzione del materiale, del tipo di lavorazione (Lam o saldata) e dalla snellezza equivalente della trave λ_{LT} .

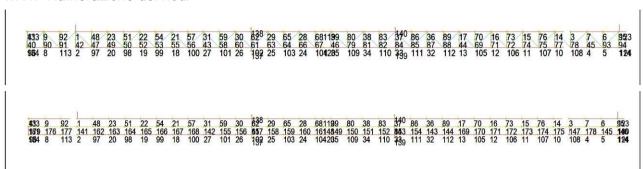
$$\lambda_{\text{LT}} = u \nu \lambda \sqrt{\beta_{\text{W}}}$$

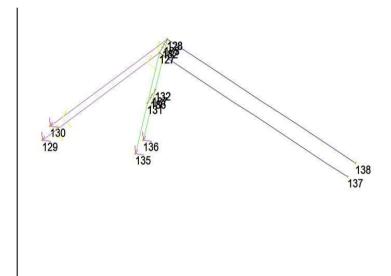
4.6. ANALISI SISMICA

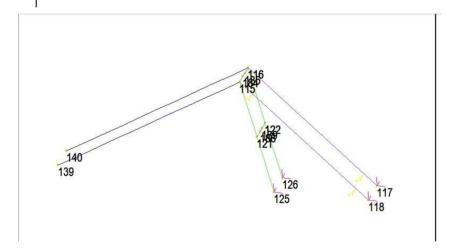
L'analisi sismica è stata condotta in regime lineare per la determinazione delle frequenze e dei modi di vibrare verificando in ogni caso lo stato degli stralli affinché risultassero sempre in trazione. In seconda analisi sono state applicate le forze inerziali sismiche calcolate con combinazione quadratica (CQC) all'interno di 3 appositi casi di carico e combinati direttamente nell'analisi statica non lineare.

È stata effettuata anche l'analisi per azione sismica verticale data la luce dell'impalcato.

Di seguito si riportano i risultati dell'analisi in frequenza.

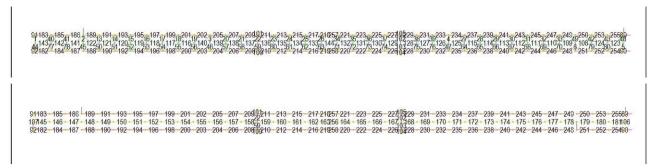

	ARTICIPATION	Model Mass	DE V	PF-Y	DE 7
Mode	Frequency (Hz)	Modal Mass (Engineering)	PF-X (%)	(%)	PF-Z (%)
1	1.320E+00	3.007E+03	0.000	8.728	0.000
2 3 4 5 6 7	1.331E+00 2.095E+00	2.954E+03 1.270E+04	0.000	7.895 53.457	0.000
4	3.355E+00	9.767E+03	0.089	0.000	0.738
5	3.507E+00	9.817E+03	0.005	0.000	58.464
6 7	3.646E+00 4.472E+00	5.569E+03 6.862E+03	0.006 0.000	0.000 0.055	6.604 0.000
8	4.475E+00	7.119E+03	0.000	0.001	0.000
9	5.196E+00	1.716E+03	4.161	0.000	0.000
10 11	5.202E+00 5.276E+00	1.716E+03 4.525E+03	0.000	0.000 0.193	$0.015 \\ 0.000$
12	5.293E+00	1.415E+04	0.001	0.036	0.000
13	6.845E+00	1.200E+04	1.019	0.000	0.006
14 15	7.801E+00 7.839E+00	1.630E+03 1.591E+03	0.000	0.004 0.220	0.000
16	8.762E+00	9.252E+03	0.000	0.000	0.000
17	9.160E+00	1.289E+04	0.049	0.000	0.237
18 19	9.188E+00 9.197E+00	5.808E+06 1.064E+05	0.000	0.000 0.894	$0.001 \\ 0.000$
20	9.286E+00	4.782E+04	0.001	1.920	0.000
21	9.315E+00	1.832E+04	0.003	4.954	0.000
22 23	9.325E+00 9.338E+00	2.593E+06 5.317E+07	0.000	0.000 0.000	0.000
24	9.338E+00	4.893E+07	0.000	0.000	0.000
25	9.347E+00	8.548E+07	0.000	0.000	0.000
26 27	9.347E+00 9.347E+00	8.222E+07 7.091E+07	0.000	0.000 0.000	0.000
28	9.347E+00	2.997E+07	0.000	0.000	0.000
29 30	9.350E+00 9.350E+00	6.263E+07 6.263E+07	0.000 0.000	0.000 0.000	0.000
30 31	9.352E+00	1.380E+10	0.000	0.000	0.000
32	9.352E+00	2.457E+10	0.000	0.000	0.000
33 34	9.353E+00 9.353E+00	8.912E+06 1.421E+08	0.000 0.000	$0.010 \\ 0.000$	0.000
35	9.354E+00	6.898E+08	0.000	0.000	0.000
36	9.354E+00	5.625E+08	0.000	0.000	0.000
37 38	9.426E+00 9.442E+00	1.178E+05 3.213E+05	0.000 0.000	0.100 0.000	0.000
39	9.447E+00	2.991E+05	0.000	0.136	0.000
40	9.646E+00	1.867E+04	0.000	0.000	0.000
41 42	1.099E+01 1.230E+01	1.242E+04 1.240E+04	0.000 8.946	0.025 0.008	0.000 0.003
43	1.257E+01	8.857E+02	0.260	0.021	0.001
44 45	1.260E+01 1.301E+01	9.673E+02 4.090E+04	0.686 2.310	0.458 0.614	0.004 0.005
46	1.322E+01	1.799E+07	0.065	0.000	0.003
47	1.322E+01	2.593E+04	45.124	0.003	0.004
48 49	1.327E+01 1.330E+01	5.544E+05 2.321E+05	0.274 0.032	0.006 0.000	0.000
50	1.511E+01	1.217E+04	15.779	1.583	0.018
51	1.612E+01	1.260E+04	0.568	1.856	0.022
52 	1.619E+01	6.395E+06 	0.000	0.002	0.001
TOTAL	MASS PARTICI	PATION FACTORS	79.379	83.178	66.123

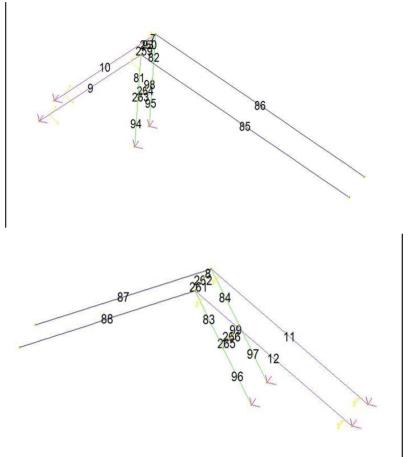



4.7. SCHEMA DELLA STRUTTURA E DEI VINCOLI

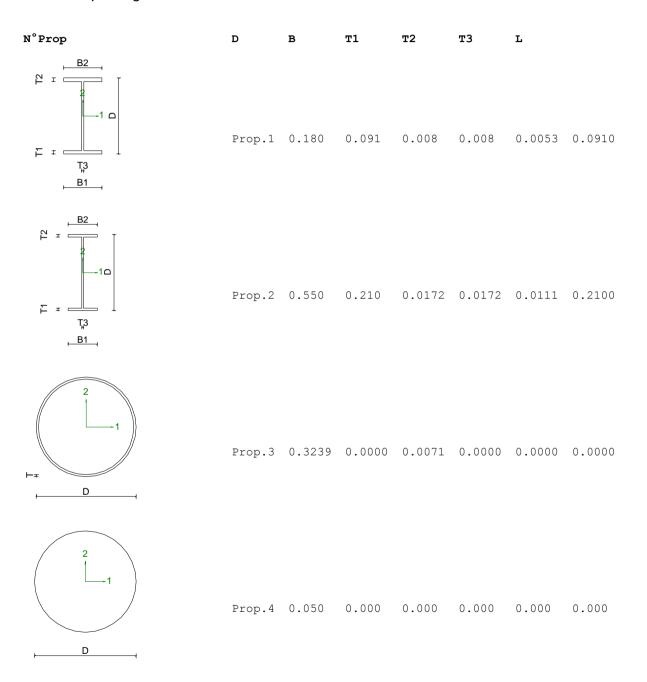
Nel seguito vengono riportate delle immagini riepilogative della numerazione dei nodi e degli elementi.

4.7.1. Numerazione dei nodi

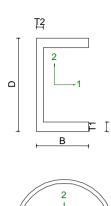




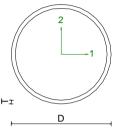
4.7.2. Numerazione delle aste

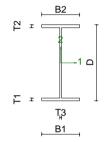

4.8. CARATTERISTICHE DEGLI ELEMENTI TRAVE

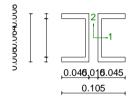
4.8.1. Schema delle proprietà del modello

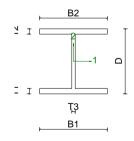

Ad ogni proprietà viene assegnata un tipo specifico di elemento nel modello, raggruppato per funzione e posizione. In questo modo è stato possibile ottimizzare tutta la parte della struttura.

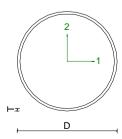
Di seguito riportiamo il riepilogo di ogni proprietà per la struttura primaria.


4.8.2. Proprietà geometriche delle sezioni

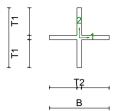



Prop.5 0.080 0.045 0.008 0.006 0.000 0.000


Prop.13 0.3239 0.0000 0.0127 0.0000 0.0000 0.0000


Prop.18 0.300 0.150 0.0107 0.0107 0.0071 0.1500

Prop.19 0.080 0.045 0.008 0.006 0.000 0.000



Prop.20 0.096 0.100 0.008 0.008 0.005 0.100

Prop.21 0.273 0.000 0.0071 0.0000 0.0000 0.0000

Prop.22 0.270 0.270 0.020 0.020 0.000 0.000

4.8.3. Proprietà inerziali delle sezioni

Proprietà	Area	I ₁₁	I ₂₂	J
	[m²]	[m ⁴]	[m ⁴]	[m ⁴]
1 2	2.390e-03	1.317e-05	1.010e-06	3.920e-08
	1.340e-02	6.712e-04	2.668e-05	9.475e-07
3	7.066e-03	8.869e-05	8.869e-05	1.774e-04
4	1.963e-03	3.068e-07	3.068e-07	6.136e-07
5	1.150e-03	1.060e-06	1.940e-07	2.110e-08
13	1.240e-02	1.510e-04	1.510e-04	3.010e-04
18	5.380e-03	8.356e-05	6.040e-06	1.557e-07
19	2.208e-03	2.136e-06	1.626e-06	3.994e-08
20	2.120e-03	3.490e-06	1.340e-06	3.747e-08
21	5.931e-03	5.245e-05	5.245e-05	1.049e-04

4.8.4. Dati delle aste

Numero	Gruppo	Materiale	Lavorazione	Proprietà
1	11	S355	Laminata	IPE 300
2	8	S355	Laminata	IPE 300
3	8	S355	Laminata	IPE 180
4	8	S355	Laminata	IPE 180
5	11	S355	Laminata	IPE 300
6	8	S355	Laminata	IPE 300
7	15	S355	Laminata	CHS 273s7.1
8	15	S355	Laminata	CHS 273s7.1
9	16	S355	Laminata	chs 323.9x12.7
10	16	S355	Laminata	chs 323.9x12.7
11	16	S355	Laminata	chs 323.9x12.7
12	16	S355	Laminata	chs 323.9x12.7
13	11	S355	Laminata	IPE 180
14	8	S355	Laminata	IPE 180
15	11	S355	Laminata	IPE 300
16	8	S355	Laminata	IPE 180
17	11	S355	Laminata	IPE 180
18	8	S355	Laminata	IPE 300
19	11	S355	Laminata	IPE 180
20	11	S355	Laminata	IPE 300
21	8	S355	Laminata	IPE 180
22	12	S355	Laminata	chs 323.9x12.7
23	11	S355	Laminata	IPE 180
24	11	S355	Laminata	IPE 180
25	8	S355	Laminata	IPE 300
26	11	S355	Laminata	IPE 180
27	11	S355	Laminata	IPE 180
28	8	S355	Laminata	IPE 300
29	11	S355	Laminata	IPE 180
30	8	S355	Laminata	IPE 180
31	11	S355	Laminata	IPE 300
32	8	S355	Laminata	IPE 180
33	11	S355	Laminata	IPE 180
34	11	S355	Laminata	IPE 180

35	8	S355	Laminata	IPE 300
36	11	S355	Laminata	IPE 180
37	11	S355	Laminata	IPE 180
38	8	S355	Laminata	IPE 180
39	11	S355	Laminata	IPE 300
40	8	S355	Laminata	IPE 180
41	11	S355	Laminata	IPE 180
42	11	S355	Laminata	IPE 180
43	8	S355	Laminata	IPE 180
44	11	S355	Laminata	IPE 300
45	8	S355	Laminata	IPE 300
46	8	S355	Laminata	IPE 180
47	8	S355	Laminata	IPE 180
48	11	S355	Laminata	IPE 300
49	8	S355	Laminata	IPE 300
50	11	S355	Laminata	IPE 180
51	8	S355	Laminata	IPE 180
52	11	S355	Laminata	IPE 300
53	8	S355	Laminata	IPE 180
54	11	S355	Laminata	IPE 180
55	8	S355	Laminata	IPE 300
56	11	S355	Laminata	IPE 180
57	11	S355	Laminata	IPE 300
58	8	S355	Laminata	IPE 180
59	12	S355	Laminata	chs 323.9x12.7
60	11	S355	Laminata	IPE 180
61	11	S355	Laminata	IPE 180
62	8	S355	Laminata	IPE 300
63	11	S355	Laminata	IPE 180
64	11	S355	Laminata	IPE 180
65	8	S355	Laminata	IPE 300
66	11			IPE 180
		S355	Laminata	
67	8	S355	Laminata	IPE 180
68	11	S355	Laminata	IPE 300
69	8	S355	Laminata	IPE 180
70	11	S355	Laminata	IPE 180
71	11	S355	Laminata	IPE 180
72	8	S355	Laminata	IPE 300
73	11	S355	Laminata	IPE 180
74	11	S355	Laminata	IPE 180
75	8	S355	Laminata	IPE 180
76	11	S355	Laminata	IPE 300
77	8	S355	Laminata	IPE 180
78	11	S355	Laminata	IPE 180
79	11	S355	Laminata	IPE 180
80	8	S355	Laminata	IPE 180
81	14	S355	Laminata	CHS 323.9x7.1
82	14	S355	Laminata	CHS 323.9x7.1
83	14	S355	Laminata	CHS 323.9x7.1
84	14	S355	Laminata	CHS 323.9x7.1
85	17	S235	Laminata	cavi
86	17	S235	Laminata	cavi
87	17	S235	Laminata	cavi
88	17	S235	Laminata	cavi
	7			
89		S355	Laminata	IPE 550
90	7	S355	Laminata	IPE 550
91	7	S355	Laminata	IPE 550
92	7	S355	Laminata	IPE 550
93	15	S355	Laminata	IPE 180
94	14	S355	Laminata	CHS 323.9x7.1
95	14	S355	Laminata	CHS 323.9x7.1
96	14	S355	Laminata	CHS 323.9x7.1
97	14	S355	Laminata	CHS 323.9x7.1
98	15	S355	Laminata	CHS 273s7.1
99	15	S355	Laminata	CHS 273s7.1
100	12	S355	Laminata	chs 323.9x12.7
101	12	S355	Laminata	chs 323.9x12.7
102	12	S355	Laminata	chs 323.9x12.7
103	12	S355	Laminata	chs 323.9x12.7
103	12	S355	Laminata	chs 323.9x12.7
	14	2222	паштнага	CIIO JAJ. JAIA. I

-				
105	1.0	2255	_	1 202 0 10 7
105	12	S355	Laminata	chs 323.9x12.7
106	9	S355	Laminata	HEA100
107	9	S355	Laminata	HEA100
108	10	S355	Laminata	2xupn80
109	10	S355	Laminata	2xupn80
110	10	S355	Laminata	2xupn80
111	10	S355	Laminata	2xupn80
112	10	S355	Laminata	2xupn80
113	10	S355	Laminata	2xupn80
114	10	S355	Laminata	UPN80
115	10	S355	Laminata	UPN80
116	10	S355	Laminata	UPN80
117	10	S355	Laminata	UPN80
118	10	S355	Laminata	2xupn80
119	10	S355	Laminata	2xupn80
120	10	S355	Laminata	2xupn80
121	10	S355	Laminata	2xupn80
122	10	S355	Laminata	2xupn80
123	10	S355	Laminata	2xupn80
124	10	S355	Laminata	2xupn80
125	10	S355	Laminata	UPN80
126	10	S355	Laminata	UPN80
127	10	S355	Laminata	UPN80
128	10	S355	Laminata	UPN80
129	10	S355	Laminata	UPN80
130	10	S355	Laminata	UPN80
131	10	S355	Laminata	UPN80
132	10	S355	Laminata	UPN80
133	10	S355	Laminata	UPN80
134	10	S355	Laminata	UPN80
135	10	S355	Laminata	UPN80
136	10	S355	Laminata	UPN80
137	10	S355	Laminata	UPN80
138	10	S355	Laminata	UPN80
139	10	S355	Laminata	UPN80
140	10	S355	Laminata	UPN80
141	10	S355	Laminata	2xupn80
142	10	S355	Laminata	2xupn80
143	10	S355	Laminata	2xupn80
144	10	S355	Laminata	UPN80
145	9	S355	Laminata	HEA100
146	9	S355	Laminata	HEA100
147	9	S355	Laminata	HEA100
148	9	S355	Laminata	HEA100
149	9	S355	Laminata	HEA100
150	9	S355	Laminata	HEA100
151	9	S355	Laminata	HEA100
152	9	S355	Laminata	HEA100
153	9	S355	Laminata	HEA100
154	9	S355	Laminata	HEA100
155	9	S355	Laminata	HEA100
156	9	S355	Laminata	HEA100
157	9	S355	Laminata	HEA100
158	9	S355	Laminata	HEA100
159	9	S355	Laminata	HEA100
160	9	S355	Laminata	HEA100
161	9	S355	Laminata	HEA100
162	9	S355	Laminata	HEA100
163	9	S355	Laminata	HEA100
164	9	S355	Laminata	HEA100
165	9	S355	Laminata	HEA100
166	9	S355		
			Laminata	HEA100
167	9	S355	Laminata	HEA100
168	9	S355	Laminata	HEA100
169	9	S355	Laminata	HEA100
170	9	S355	Laminata	HEA100
171	9	S355	Laminata	HEA100
172	9	S355	Laminata	HEA100
173	9	S355	Laminata	HEA100
174	9	S355	Laminata	HEA100

175	9	S355	Laminata	HEA100
176	9	S355	Laminata	HEA100
177	9	S355	Laminata	HEA100
178	9	S355	Laminata	HEA100
179	9	S355	Laminata	HEA100
180	9	S355	Laminata	HEA100
181	9	S355	Laminata	HEA100
182	7	S355	Laminata	IPE 550
	7			
183		S355	Laminata	IPE 550
184	7	S355	Laminata	IPE 550
185	7	S355	Laminata	IPE 550
186	7	S355	Laminata	IPE 550
187	7	S355	Laminata	IPE 550
188	7	S355	Laminata	IPE 550
189	7	S355	Laminata	IPE 550
190	7	S355	Laminata	IPE 550
191	7	S355	Laminata	IPE 550
192	7	S355	Laminata	IPE 550
193	7	S355	Laminata	IPE 550
194	7	S355	Laminata	IPE 550
195	7			
		S355	Laminata	
196	7	S355	Laminata	IPE 550
197	7	S355	Laminata	IPE 550
198	7	S355	Laminata	IPE 550
199	7	S355	Laminata	IPE 550
200	7	S355	Laminata	IPE 550
201	7	S355	Laminata	IPE 550
	7			
202		S355	Laminata	IPE 550
203	7	S355	Laminata	IPE 550
204	7	S355	Laminata	IPE 550
205	7	S355	Laminata	IPE 550
206	7	S355	Laminata	IPE 550
207	7	S355	Laminata	IPE 550
208	7	S355	Laminata	
209	7	S355	Laminata	IPE 550
210	7	S355	Laminata	IPE 550
211	7	S355	Laminata	IPE 550
212	7	S355	Laminata	IPE 550
213	7	S355	Laminata	IPE 550
214	7	S355	Laminata	IPE 550
215	7			IPE 550
		S355	Laminata	
216	7	S355	Laminata	IPE 550
217	7	S355	Laminata	IPE 550
218	7	S355	Laminata	IPE 550
219	7	S355	Laminata	IPE 550
220	7	S355	Laminata	IPE 550
221	7	S355	Laminata	IPE 550
222	7	S355	Laminata	IPE 550
223	7	S355	Laminata	IPE 550
224	7	S355	Laminata	IPE 550
225	7	S355	Laminata	IPE 550
226	7	S355	Laminata	IPE 550
227	7	S355	Laminata	IPE 550
	7			
228		S355	Laminata	IPE 550
229	7	S355	Laminata	IPE 550
230	7	S355	Laminata	IPE 550
231	7	S355	Laminata	IPE 550
232	7	S355	Laminata	IPE 550
233	7	S355	Laminata	IPE 550
234	7	S355	Laminata	IPE 550
235	7	S355	Laminata	IPE 550
236	7	S355	Laminata	IPE 550
237	7	S355	Laminata	IPE 550
238	7	S355	Laminata	IPE 550
239	7	S355	Laminata	IPE 550
240	7	S355	Laminata	IPE 550
241	7	S355	Laminata	IPE 550
242	7	S355	Laminata	IPE 550
243	7	S355	Laminata	IPE 550
244	7	S355	Laminata	IPE 550

245	7	S355	Laminata	IPE 550
246	7	S355	Laminata	IPE 550
247	7	S355	Laminata	IPE 550
248	7	S355	Laminata	IPE 550
249	7	S355	Laminata	IPE 550
250	7	S355	Laminata	IPE 550
251	7	S355	Laminata	IPE 550
252	7	S355	Laminata	IPE 550
253	7	S355	Laminata	IPE 550
254	7	S355	Laminata	IPE 550
255	7	S355	Laminata	IPE 550
256	9	S355	Laminata	HEA100
257	7	S355	Laminata	IPE 550
258	7	S355	Laminata	IPE 550
259	15	S355	Laminata	CHS 273s7.1
260	15	S355	Laminata	Giunto croce
261	15	S355	Laminata	CHS 273s7.1
262	15	S355	Laminata	Giunto croce
263	15	S355	Laminata	CHS 273s7.1
264	15	S355	Laminata	Giunto croce
265	15	S355	Laminata	CHS 273s7.1
266	15	S355	Laminata	Giunto croce

4.8.5. Attributi di instabilità

Numero	Lunghezza	Molt.	per inf	lessione	40	1.00	1.00	1.00	1.0
	[m]	β_1	β_2	β_3	41	1.00	1.00	1.00	1.
					42	1.00	1.00	1.00	1.
1	1.00	1.00	1.00	1.00	43	1.00	1.00	1.00	1.
2	1.00	1.00	1.00	1.00	44	1.00	1.00	1.00	1.
3	1.00	1.00	1.00	1.00	45	1.00	1.00	1.00	1.
4	1.00	1.00	1.00	1.00	46	1.00	1.00	1.00	1.
5	1.00	1.00	1.00	1.00	47	1.00	1.00	1.00	1.
6	1.00	1.00	1.00	1.00	48	1.00	1.00	1.00	1.
7	1.10	2.55	2.55	1.00	49	1.00	1.00	1.00	1.
8	1.10	2.55	2.55	1.00	50	1.00	1.00	1.00	1.
9	17.20	1.00	1.00	1.00	51	1.00	1.00	1.00	1.
10	17.20	1.00	1.00	1.00	52	1.00	1.00	1.00	1.
11	17.20	1.00	1.00	1.00	53	1.00	1.00	1.00	1.
12	17.20	1.00	1.00	1.00	54	1.00	1.00	1.00	1.
13	1.00	1.00	1.00	1.00	55	1.00	1.00	1.00	1.
14	1.00	1.00	1.00	1.00	56	1.00	1.00	1.00	1.
15	1.00	1.00	1.00	1.00	57	1.00	1.00	1.00	1.
16	1.00	1.00	1.00	1.00	58	1.00	1.00	1.00	1.
17	1.00	1.00	1.00	1.00	59	1.00	1.00	1.00	1.
18	1.00	1.00	1.00	1.00	60	1.00	1.00	1.00	1.
19	1.00	1.00	1.00	1.00	61	1.00	1.00	1.00	1.
20	1.00	1.00	1.00	1.00	62	1.00	1.00	1.00	1.
21	1.00	1.00	1.00	1.00	63	1.00	1.00	1.00	1.
22	1.00	1.00	1.00	1.00	64	1.00	1.00	1.00	1.
23	1.00	1.00	1.00	1.00	65	1.00	1.00	1.00	1.
24	1.00	1.00	1.00	1.00	66	1.00	1.00	1.00	1.
25	1.00	1.00	1.00	1.00	67	1.00	1.00	1.00	1.
26	1.00	1.00	1.00	1.00	68	1.00	1.00	1.00	1.
27	1.00	1.00	1.00	1.00	69	1.00	1.00	1.00	1.
28	1.00	1.00	1.00	1.00	70	1.00	1.00	1.00	1.
29	1.00	1.00	1.00	1.00	71	1.00	1.00	1.00	1.
30	1.00	1.00	1.00	1.00	72	1.00	1.00	1.00	1.
31	1.00	1.00	1.00	1.00	73	1.00	1.00	1.00	1.
32	1.00	1.00	1.00	1.00	74	1.00	1.00	1.00	1.
33	1.00	1.00	1.00	1.00	75	1.00	1.00	1.00	1.
34	1.00	1.00	1.00	1.00	76	1.00	1.00	1.00	1.
35	1.00	1.00	1.00	1.00	77	1.00	1.00	1.00	1.
36	1.00	1.00	1.00	1.00	78	1.00	1.00	1.00	1.
37				1.00	79	1.00	1.00	1.00	1.
	1.00	1.00	1.00		80	1.00	1.00	1.00	1.
38 39	1.00	1.00	1.00	1.00	81	6.18	2.00	1.00	1.
39	1.00	1.00	1.00	1.00	82	6.18	2.00	1.00	1.

83	6.18	2.00	1.00	1.00	153	2.00	1.00	1.00	1.00
84	6.18	2.00	1.00	1.00	154	2.00	1.00	1.00	1.00
85	22.36	1.00	1.00	1.00	155	2.00	1.00	1.00	1.00
	22.36	1.00	1.00		156	2.00	1.00		
86				1.00				1.00	1.00
87	22.36	1.00	1.00	1.00	157	2.00	1.00	1.00	1.00
88	22.36	1.00	1.00	1.00	158	2.00	1.00	1.00	1.00
89	0.10	1.00	1.00	1.00	159	2.00	1.00	1.00	1.00
90	0.10	1.00	1.00	1.00	160	2.00	1.00	1.00	1.00
91	0.10	1.00	1.00	1.00	161	2.00	1.00	1.00	1.00
92	0.10	1.00	1.00	1.00	162	2.00	1.00	1.00	1.00
93	2.80	1.00	1.00	1.00	163	1.00	1.00	1.00	1.00
94	6.18	2.00	1.00	1.00	164	2.00	1.00	1.00	1.00
95	6.18	2.00	1.00	1.00	165	2.00	1.00	1.00	1.00
96	6.18	2.00	1.00	1.00	166	2.00	1.00	1.00	1.00
97	6.18	2.00	1.00	1.00	167	2.00	1.00	1.00	1.00
98	1.10	2.55	2.55	1.00	168	2.00	1.00	1.00	1.00
99	1.10	2.55	2.55	1.00	169	2.00	1.00	1.00	1.00
100	0.40	1.00	1.00	1.00	170	2.00	1.00	1.00	1.00
101	0.40	1.00	1.00	1.00	171	2.00	1.00	1.00	1.00
102	1.00	1.00	1.00	1.00	172	2.00	1.00	1.00	1.00
103	1.00	1.00	1.00	1.00	173	2.00	1.00	1.00	1.00
104	0.40	1.00	1.00	1.00	174	2.00	1.00	1.00	1.00
105	0.40	1.00	1.00	1.00	175	2.00	1.00	1.00	1.00
106	0.10	1.00	1.00	1.00	176	2.00	1.00	1.00	1.00
107	0.10	1.00	1.00	1.00	177	2.00	1.00	1.00	1.00
108	2.83	1.00	1.00	1.00	178	2.00	1.00	1.00	1.00
109	2.83	1.00	1.00	1.00	179	2.00	1.00	1.00	1.00
110	2.83	1.00	1.00	1.00	180	2.00	1.00	1.00	1.00
111	2.83	1.00	1.00	1.00	181	2.00	1.00	1.00	1.00
112									
	2.83	1.00	1.00	1.00	182	2.00	1.00	2.00	1.00
113	2.83	1.00	1.00	1.00	183	2.00	1.00	2.00	1.00
114	2.83	0.50	0.50	1.00	184	2.00	1.00	2.00	1.00
115	2.83	0.50	0.50	1.00	185	2.00	1.00	2.00	1.00
116	2.83	0.50	0.50	1.00	186	2.00	1.00	1.00	1.00
117	2.83	0.50	0.50	1.00	187	2.00	1.00	1.00	1.00
118	2.83	1.00	1.00	1.00	188	2.00	1.00	2.00	1.00
119	2.83	1.00	1.00	1.00	189	2.00	1.00	2.00	1.00
120	2.83	1.00	1.00	1.00	190	2.00	1.00	2.00	1.00
121	2.83	1.00	1.00	1.00	191	2.00	1.00	2.00	1.00
122	2.83	1.00	1.00	1.00	192	2.00	1.00	7.00	3.00
123	2.83	1.00	1.00	1.00	193	2.00	1.00	7.00	3.00
124	2.83	1.00	1.00	1.00	194	2.00	1.00	7.00	3.00
			0.50		195		1.00		
126	2.83	0.50	0.50	1.00	196	2.00	1.00	7.00	2.00
127	2.83	0.50	0.50	1.00	197 198	2.00	1.00	7.00	2.00
128	2.83	0.50	0.50	1.00		2.00	1.00	7.00	2.00
129	2.83	0.50	0.50	1.00	199	2.00	1.00	7.00	2.00
130	2.83	0.50	0.50	1.00		2.00	1.00	7.00	2.00
					200	2.00			
131	2.83 2.83	0.50	0.50	1.00	201	2.00	1.00	7.00	2.00
132	2.83	0.50	0.50	1.00	201		1.00	7.00	3.00
133	2.83	0.50	0.50		203	2.00	1.00	7.00	3.00
134	2.83	0.50	0.50	1.00	204 205	2.00	1.00	7.00	3.00
135	2.83	0.50	0.50	1.00	205	2.00	1.00	7.00	3.00
136	2.83	0.50	0.50	1.00	206		1.00	4.00	2.00
					200	2.00			
137	2.83	0.50	0.50	1.00	207 208	2.00	1.00	4.00	2.00
138	2.83	0.50	0.50	1.00	208	2.00	1.00	4.00	2.00
139	2.83	0.50	0.50		209		1.00		2.00
140	2.83	0.50	0.50	1.00	210	2.00	1.00	4.00	2.00
141	2.83	1.00	1.00	1.00	211	2.00	1.00	4.00	2.00
142	2.83	1.00	1.00	1.00	211 212	2.00	1.00	4.00	2.00
143	2.83	1.00	1.00		213		1.00	4.00	2.00
144	2.83	0.50	0.50	1.00	214 215	2.00	1.00	5.00	2.00
145	2.00	1.00	1.00	1.00	215	2.00	1.00	5.00	2.00
146	2.00	1.00	1.00	1.00	216	2.00	1.00	5.00	2.00
147	2.00	1.00	1.00	1.00	217	2.00	1.00	5.00	2.00
148	2.00	1.00	1.00	1.00	218	1.00	1.00	10.00	
149	2.00	1.00	1.00		219		1.00	10.00	
150	2.00	1.00	1.00	1.00	220	2.00	1.00	5.00	2.00
151	2.00	1.00	1.00	1.00	221 222	2.00	1.00	5.00	2.00
152	2.00	1.00	1.00	1.00	222	2.00	1.00	5.00	2.00

223	2.00	1.00	5.00	2.00	2	46	2.00	1.00	2.00	1.00
224	2.00	1.00	4.00	2.00	2	47	2.00	1.00	2.00	1.00
225	2.00	1.00	4.00	2.00	2	48	2.00	1.00	2.00	1.00
226	2.00	1.00	4.00	2.00	2	49	2.00	1.00	2.00	1.00
227	2.00	1.00	4.00	2.00	2.	50	2.00	1.00	1.00	1.00
228	2.00	1.00	4.00	2.00		51	2.00	1.00	1.00	1.00
229	2.00	1.00	4.00	2.00	2.	52	2.00	1.00	2.00	1.00
230	2.00	1.00	4.00	2.00	2.	53	2.00	1.00	2.00	1.00
231	2.00	1.00	4.00	2.00	2.	54	2.00	1.00	2.00	1.00
232	2.00	1.00	7.00	3.00	2.	55	2.00	1.00	2.00	1.00
233	2.00	1.00	7.00	3.00	2.	56	1.00	1.00	1.00	1.00
234	2.00	1.00	7.00	3.00	2.	57	1.00	1.00	10.00	2.00
235	2.00	1.00	7.00	3.00	2.	58	1.00	1.00	10.00	2.00
236	2.00	1.00	7.00	2.00	2.	59	1.10	2.55	2.55	1.00
237	2.00	1.00	7.00	2.00	2	60	0.60	4.67	4.67	1.00
238	2.00	1.00	7.00	2.00	2	61	1.10	2.55	2.55	1.00
239	2.00	1.00	7.00	2.00	2	62	0.60	4.67	4.67	1.00
240	2.00	1.00	7.00	2.00	2	63	1.10	2.55	2.55	1.00
241	2.00	1.00	7.00	2.00	2	64	0.60	4.67	4.67	1.00
242	2.00	1.00	7.00	3.00	2	65	1.10	2.55	2.55	1.00
243	2.00	1.00	7.00	3.00	2	66	0.60	4.67	4.67	1.00
244	2.00	1.00	7.00	3.00	_					
245	2.00	1.00	7.00	3.00						

5. VERIFICHE DI RESISTENZA E STABILITÀ DELLA STRUTTURA

In questo capitolo riportiamo tutti i controlli effettuati sugli elementi della struttura primaria e secondaria, considerando le sollecitazioni combinate agli SLU e agli SLV.

5.1. VERIFICA DEGLI ELEMENTI STRUTTURALI - SLU

Di seguito riportiamo le verifiche di resistenza e le verifiche di stabilità di tutte le travi che costituiscono la struttura nelle combinazioni SLU.

5.1.1. Sommario di verifica delle proprietà

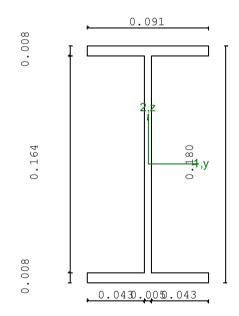
Prop.	Fatt.Res.	Trave	L.C.	Cl.	Fatt.Inst.	Trave	L.C.	Cl.
1	0.21	74	LC 18	1	0.39	93	 LC 31	3
2	0.64	249	LC 18	3	0.91	235	LC 18	3
3	0.56	97	LC 28	2	0.98	97	LC 27	2
5	0.29	114	LC 28	1	0.84	114	LC 28	1
13	0.36	105	LC 27	1	0.31	102	LC 27	1
18	0.22	44	LC 29	4	0.10	44	LC 29	1
19	0.31	142	LC 28	3	0.83	141	LC 28	3
20	0.25	148	LC 27	1	0.26	147	LC 27	1
21	0.55	98	LC 28	2	0.42	98	LC 28	2

5.1.2. Verifica delle singole aste

Trave	Fatt.Res.	L.C.	Ascissa	Cl.	Fatt.Inst.	L.C.	Ascissa	Cl.	Stato
1	0.12	LC 28	1.00	4	0.06	LC 29	0.00	1	Verificato
2	0.07	LC 29	1.00	3	0.04	LC 27	0.00	1	Verificato
3	0.18	LC 27	0.00	1	0.19	LC 27	1.00	1	Verificato
4	0.18	LC 16	0.00	1	0.18	LC 16	0.00	1	Verificato
5	0.12	LC 32	1.00	4	0.05	LC 32	0.00	1	Verificato
6	0.05	LC 32	0.00	1	0.04	LC 27	0.00	1	Verificato
7	0.14	LC 30	1.10	2	0.10	LC 30	1.10	2	Verificato
8	0.14	LC 30	1.10	2	0.10	LC 30	1.10	2	Verificato
9	0.25	LC 27	8.60	1	0.12	LC 28	17.20	1	Verificato
10	0.24	LC 27	8.60	1	0.10	LC 28	17.20	1	Verificato
11	0.24	LC 27	8.60	1	0.10	LC 28	17.20	1	Verificato
12	0.25	LC 27	8.60	1	0.12	LC 28	17.20	1	Verificato
13	0.16	LC 16	0.00	1	0.17	LC 16	0.00	1	Verificato
14	0.16	LC 27	0.00	1	0.17	LC 27	0.00	1	Verificato
15	0.08	LC 27	0.00	1	0.07	LC 27	1.00	1	Verificato
16	0.16	LC 27	0.00	1	0.17	LC 27	0.00	1	Verificato
17	0.16	LC 27	0.00	1	0.17	LC 16	0.00	1	Verificato
18	0.10	LC 27	0.00	1	0.08	LC 27	1.00	1	Verificato
19	0.17	LC 27	0.00	1	0.17	LC 16	0.00	1	Verificato
20	0.14	LC 27	0.00	1	0.09	LC 16	0.00	1	Verificato
21	0.21	LC 27	0.00	1	0.21	LC 27	1.00	1	Verificato
22	0.28	LC 27	1.00	1	0.31	LC 27	1.00	1	Verificato
23	0.21	LC 16	0.00	1	0.19	LC 27	1.00	1	Verificato
24	0.18	LC 17	0.00	1	0.18	LC 17	0.00	1	Verificato
25	0.11	LC 17	0.00	1	0.07	LC 17	0.00	1	Verificato
26	0.15	LC 16	0.00	1	0.17	LC 16	0.00	1	Verificato
27	0.17	LC 27	0.00	1	0.18	LC 27	1.00	1	Verificato
28	0.10	LC 16	0.00	1	0.08	LC 27	1.00	1	Verificato
29	0.17	LC 27	0.00	1	0.18	LC 27	0.00	1	Verificato
30	0.16	LC 14	0.00	1	0.17	LC 14	0.00	1	Verificato
31	0.08	LC 27	0.00	1	0.07	LC 27	1.00	1	Verificato
32	0.16	LC 27	0.00	1	0.17	LC 14	0.00	1	Verificato
33	0.16	LC 16	0.00	1	0.17	LC 16	0.00	1	Verificato
34	0.16	LC 27	0.00	1	0.17	LC 27	1.00	1	Verificato
35	0.11	LC 18	0.00	1	0.07	LC 18	1.00	1	Verificato

36	0.19	LC 18	0.00	1	0.19	LC 27	1.00	1	Verificato
37	0.21	LC 16	0.00	1	0.19	LC 16	0.00	1	Verificato
38	0.21	LC 16	0.00	1	0.21	LC 16	0.00	1	Verificato
39	0.14	LC 16	0.00	1	0.09	LC 27	1.00	1	Verificato
40	0.17	LC 27	0.00	1	0.19	LC 27	0.00	1	Verificato
41	0.16	LC 24	0.00	1	0.17	LC 24	0.00	1	Verificato
						LC 24			Verificato
42	0.15	LC 24	0.00	1	0.17		0.00	1	
43	0.17	LC 14	0.00	1	0.19	LC 14	0.00	1	Verificato
44	0.22	LC 29	0.00	4	0.10	LC 29	1.00	1	Verificato
45	0.05	LC 27	1.00	1	0.04	LC 27	1.00	1	Verificato
	0.18								
46		LC 27	1.00	1	0.18	LC 27	1.00	1	Verificato
47	0.18	LC 16	1.00	1	0.18	LC 16	1.00	1	Verificato
48	0.15	LC 32	0.00	4	0.05	LC 32	1.00	1	Verificato
49	0.05	LC 32	1.00	1	0.04	LC 14	1.00	1	Verificato
50	0.16	LC 16	1.00	1	0.17	LC 16	1.00	1	Verificato
51	0.16	LC 27	1.00	1	0.17	LC 27	1.00	1	Verificato
52	0.08	LC 27	1.00	1	0.07	LC 27	1.00	1	Verificato
53	0.16	LC 27	1.00	1	0.17	LC 27	1.00	1	Verificato
54	0.17	LC 27	1.00	1	0.17	LC 16	1.00	1	Verificato
55	0.16	LC 28	0.00	4	0.08	LC 27	1.00	1	Verificato
56	0.17	LC 27	1.00	1	0.17	LC 16	1.00	1	Verificato
57	0.15	LC 27	1.00	1	0.09	LC 27	1.00	1	Verificato
58	0.21	LC 27	1.00	1	0.21	LC 27	1.00	1	Verificato
59				1					
	0.27	LC 16	0.00		0.31	LC 16	1.00	1	Verificato
60	0.21	LC 16	1.00	1	0.19	LC 27	1.00	1	Verificato
61	0.18	LC 17	1.00	1	0.19	LC 17	1.00	1	Verificato
62	0.11	LC 17	1.00	1	0.07	LC 17	1.00	1	Verificato
63	0.15	LC 16	1.00	1	0.17	LC 16	1.00	1	Verificato
64	0.17	LC 16	1.00	1	0.17	LC 27	1.00	1	Verificato
65	0.10	LC 28	0.00	1	0.08	LC 27	1.00	1	Verificato
66	0.17	LC 27	1.00	1	0.18	LC 27	1.00	1	Verificato
67	0.16	LC 27	1.00	1	0.17	LC 14	1.00	1	Verificato
68	0.10	LC 28	0.00	4	0.07	LC 27	1.00	1	Verificato
69	0.16	LC 27	1.00	1	0.17	LC 14	1.00	1	Verificato
70	0.16	LC 16	1.00	1	0.17	LC 16	1.00	1	Verificato
71	0.15	LC 27	1.00	1	0.17	LC 27	1.00	1	Verificato
72				1				1	
	0.11	LC 18	1.00		0.07	LC 18	1.00		Verificato
73	0.18	LC 18	1.00	1	0.19	LC 27	1.00	1	Verificato
74	0.21	LC 18	1.00	1	0.19	LC 16	1.00	1	Verificato
75	0.21	LC 16	1.00	1	0.21	LC 16	1.00	1	Verificato
76	0.14	LC 16	1.00	1	0.09	LC 27	1.00	1	Verificato
77	0.18	LC 27	1.00	1	0.19	LC 27	1.00	1	Verificato
78	0.16	LC 24	1.00	1	0.17	LC 24	1.00	1	Verificato
79	0.15	LC 24	1.00	1	0.16	LC 24	1.00	1	Verificato
80	0.17	LC 27	1.00	1	0.19	LC 14	1.00	1	Verificato
		LC 27				LC 27			
81	0.32		6.18	2	0.75		0.00	2	Verificato
82	0.34	LC 27	0.00	2	0.79	LC 27	0.00	2	Verificato
83	0.32	LC 27	6.18	2	0.76	LC 27	0.00	2	Verificato
84	0.34	LC 27	0.00	2	0.80	LC 27	0.00	2	Verificato
89	0.15	LC 28	0.00	4	0.12	LC 28	0.10	4	Verificato
						LC 21			
90	0.08	LC 28	0.00	т.	5.57e-03		0.10	3	Verificato
91	0.05	LC 17	0.10	1	4.37e-03	LC 17	0.00	1	Verificato
92	0.16	LC 28	0.10	1	0.07	LC 28	0.00	1	Verificato
93	0.19	LC 32	0.00	1	0.39	LC 31	0.00	3	Verificato
94	0.50	LC 27	6.18	2	0.84	LC 27	0.00	2	Verificato
95	0.56	LC 28	6.18	2	0.98	LC 27	0.00	2	Verificato
96	0.50	LC 27	6.18	2	0.84	LC 27	0.00	2	Verificato
97	0.56	LC 28	6.18	2	0.98	LC 27	0.00	2	Verificato
98	0.55	LC 28	1.10	2	0.42	LC 28	1.10	2	Verificato
99	0.55	LC 28	1.10	2	0.42	LC 28	1.10	2	Verificato
100	0.36	LC 16	0.40	1	0.25	LC 16	0.40	1	Verificato
101	0.36	LC 27	0.00	1	0.25	LC 16	0.00	1	Verificato
102	0.28	LC 27	1.00	1	0.31	LC 27	1.00	1	Verificato
103	0.27	LC 16	0.00	1	0.30	LC 16	1.00	1	Verificato
104	0.36	LC 16	0.40	1	0.25	LC 16	0.40	1	Verificato
105	0.36	LC 27	0.00	1	0.25	LC 27	0.00	1	Verificato
106	1.25e-03	LC 30	0.00	1	4.17e-04	LC 29	0.00	1	Verificato
107	1.25e-03	LC 28	0.10	1	4.17e-04	LC 29	0.10	1	Verificato
108	0.14	LC 28	0.00	3	0.03	LC 31	0.00	3	Verificato
109	0.22	LC 28	0.00	3	0.02	LC 22	0.00	3	Verificato

110	0.22	LC 28	0.00	3	0.61	LC 28	0.00	3	Verificato
111	0.20	LC 28	0.00	3	0.02	LC 22	0.00	3	Verificato
112	0.18	LC 28	0.00	3	0.51	LC 28	0.00	3	Verificato
113	0.18	LC 28	0.00	3	0.02	LC 22	0.00	3	Verificato
114	0.29	LC 28	0.00	1	0.84	LC 28	0.00	1	Verificato
115	0.27	LC 28	0.00	Т.	0.05	LC 22	0.00	1	Verificato
116	0.25	LC 28	0.00	1	0.73	LC 28	0.00	1	Verificato
117	0.27	LC 28	0.00	т.	0.04	LC 23	0.00	1	Verificato
118	0.17	LC 28	0.00	3	0.46	LC 28	0.00	3	Verificato
119	0.17	LC 28	0.00	3	0.02	LC 23	0.00	3	Verificato
120	0.19	LC 28	0.00	3	0.52	LC 28	0.00	3	Verificato
121	0.21	LC 28	0.00	3	0.02	LC 23	0.00	3	Verificato
122	0.20	LC 28	0.00	3	0.56	LC 28	0.00	3	Verificato
123	0.13	LC 28	0.00	3	0.04	LC 31	0.00	3	Verificato
124	0.14	LC 28	0.00	3	0.39	LC 28	0.00	3	Verificato
125	0.25	LC 28	0.00	1	0.72	LC 28	0.00	1	Verificato
126	0.21	LC 28	0.00	т.	0.05	LC 22	0.00	1	Verificato
127	0.18	LC 28	0.00	1	0.54	LC 28	0.00	1	Verificato
128	0.14	LC 28	0.00	т.	0.03	LC 22	0.00	1	Verificato
129	0.11	LC 29	0.00	1	0.31	LC 29	0.00	1	Verificato
130	0.10	LC 28	0.00	Т.	0.02	LC 22	0.00	1	Verificato
131	0.06	LC 30	0.00	1	0.18	LC 30	0.00	1	Verificato
		LC 28				LC 22	0.00		
132	0.04		0.00	т.	0.02			1	Verificato
133	0.02	LC 23	0.00	т.	0.04	LC 30	0.00	1	Verificato
134	0.05	LC 28	0.00	Т.	0.02	LC 23	0.00	1	Verificato
135	0.07	LC 30	0.00	1	0.21	LC 30	0.00	1	Verificato
136	0.10	LC 28	0.00	т.	2.80e-03	LC 44	0.00	1	Verificato
137	0.13	LC 28	0.00	1	0.37	LC 28	0.00	1	Verificato
138	0.16	LC 28	0.00	т.	0.06	LC 23	0.00	1	Verificato
139	0.19	LC 28	0.00	1	0.56	LC 28	0.00	1	Verificato
140	0.22	LC 28	0.00	т.	0.05	LC 23	0.00	1	Verificato
141	0.30	LC 28	0.00	3	0.83	LC 28	0.00	3	Verificato
142	0.31	LC 28	0.00	3	0.03	LC 23	0.00	3	Verificato
	0.30								
143		LC 28	0.00	3	0.81	LC 28	0.00	3	Verificato
144	0.02	LC 22	0.00	т.	0.03	LC 23	0.00	1	Verificato
145	0.16	LC 27	0.00	1	0.18	LC 27	2.00	1	Verificato
146	0.16	LC 27	2.00	1	0.16	LC 27	2.00	1	Verificato
147	0.25	LC 27	0.00	1	0.26	LC 27	0.00	1	Verificato
148	0.25	LC 27	2.00	1	0.26	LC 27	0.00	1	Verificato
149	0.14	LC 27	2.00	1	0.15	LC 17	0.00	1	Verificato
150	0.13	LC 27	0.00	1	0.13	LC 27	0.00	1	Verificato
151	0.14	LC 27	2.00	1	0.14	LC 27	0.00	1	Verificato
152	0.13	LC 27	0.99	1	0.17	LC 27	0.00	1	Verificato
153	0.12	LC 27	1.05	1	0.15	LC 27	0.00	1	Verificato
154	0.13	LC 27	0.96	1	0.15	LC 27	2.00	1	Verificato
155	0.14	LC 27	1.02	1	0.16	LC 27	2.00	1	Verificato
156	0.18	LC 24	0.00	1	0.17	LC 24	2.00	1	Verificato
157	0.19	LC 24	2.00	1	0.16	LC 24	2.00	1	Verificato
158	0.23	LC 27	0.00	1	0.20	LC 27	2.00	1	Verificato
159	0.19	LC 27	2.00	1	0.21	LC 27	2.00	1	Verificato
160	0.17	LC 27	2.00	1	0.18	LC 27	0.00	1	Verificato
161	0.15	LC 27	0.00	1	0.15	LC 27	0.00	1	Verificato
162	0.14	LC 27	2.00	1	0.15	LC 27	0.00	1	Verificato
163	0.11	LC 24	0.00	1	0.12	LC 24	0.00	1	Verificato
164	0.15	LC 18	0.00	1	0.17	LC 18	0.00	1	Verificato
165	0.17	LC 18	2.00	1	0.18	LC 18	0.00	1	Verificato
166	0.18	LC 18	0.00	1	0.19	LC 18	0.00	1	Verificato
167	0.21	LC 18	0.00	1	0.23	LC 18	0.00	1	Verificato
168	0.24	LC 27	2.00	1	0.20	LC 27	0.00	1	Verificato
169	0.20	LC 24	0.00	1	0.16	LC 24	0.00	1	Verificato
170	0.18	LC 24	2.00	1	0.17	LC 24	0.00	1	Verificato
171	0.14	LC 27	0.98	1	0.17	LC 18	0.00	1	Verificato
172	0.13	LC 27	1.04	1	0.16	LC 18	0.00	1	Verificato
173	0.12	LC 18	0.95	1	0.17	LC 18	2.00	1	Verificato
174	0.13	LC 18	1.02	1	0.19	LC 18	2.00	1	Verificato
175	0.14	LC 27	0.00	1	0.16	LC 18	2.00	1	Verificato
176	0.13	LC 18	2.00	1	0.15	LC 18	2.00	1	Verificato
177	0.16	LC 18	0.00	1	0.18	LC 18	2.00	1	Verificato
178	0.25	LC 27	0.00	1	0.25	LC 27	2.00	1	Verificato
179	0.25	LC 27	2.00	1	0.25	LC 27	2.00	1	Verificato


180	0.16	LC 27	0.00	1	0.16	LC 27	0.00	1	Verificato
181	0.16	LC 27	2.00	1	0.18	LC 27	0.00	1	Verificato
182	0.13	LC 17	0.00	1	0.16	LC 17	2.00	1	Verificato
183	0.13	LC 17	0.00	1	0.16	LC 17	2.00	1	Verificato
184	0.27	LC 17	0.00	1	0.39	LC 17	2.00	1	Verificato
185	0.31	LC 27	0.00	3	0.40	LC 27	2.00	3	Verificato
186	0.50	LC 27	0.00	1	0.67	LC 27	0.00	1	Verificato
187	0.51	LC 27	0.00	1	0.64	LC 17	0.00	1	Verificato
188	0.51	LC 27	2.00	1	0.61	LC 26	0.00	1	Verificato
189	0.50	LC 27	2.00	1	0.65	LC 27	0.00	1	Verificato
190	0.22	LC 27	2.00	1	0.25	LC 26	0.00	1	Verificato
191	0.26	LC 27	2.00	3	0.30	LC 27	0.00	3	Verificato
192	0.17	LC 27	0.00	1	0.35	LC 32	0.00	1	Verificato
193	0.15	LC 27	0.00	2	0.35	LC 32	0.00	1	Verificato
194	0.24	LC 17	0.00	1	0.65	LC 17	0.00	1	Verificato
195	0.24	LC 27	0.00	2	0.65	LC 17	0.00	1	Verificato
196	0.29	LC 27	0.00	1	0.61	LC 17	0.00	1	Verificato
197	0.29	LC 17	0.00	1	0.61	LC 17	0.00	1	Verificato
198	0.31	LC 17	0.00	1	0.69	LC 17	0.00	1	Verificato
199	0.31	LC 17	0.00	1	0.68	LC 17	0.00	1	Verificato
200	0.31	LC 17	2.00	1	0.66	LC 17	2.00	1	Verificato
201	0.31	LC 17	2.00	1	0.66	LC 17	2.00	1	Verificato
202	0.27	LC 17	2.00	1	0.80	LC 17	2.00	1	Verificato
203	0.27	LC 27	2.00	2	0.80	LC 17	2.00	1	Verificato
204	0.21	LC 27	2.00	3	0.50	LC 17	2.00	1	Verificato
205	0.20	LC 17	2.00	1	0.50	LC 17	2.00	1	Verificato
206	0.25	LC 27	0.00	3	0.34	LC 32	2.00	1	Verificato
207	0.21	LC 32	0.00	1	0.34	LC 32	2.00	1	Verificato
208	0.57	LC 27	0.00	1	0.76	LC 27	2.00	1	Verificato
209	0.53	LC 27	0.00	1	0.70	LC 16	2.00	1	Verificato
210	0.57	LC 16	2.00	1	0.73	LC 27	2.00	1	Verificato
211	0.63	LC 27	2.00	1	0.73	LC 16	2.00	1	Verificato
212	0.28	LC 32	2.00	1	0.41	LC 32	0.00	1	Verificato
213	0.34	LC 27	2.00	1	0.41	LC 32	0.00	1	Verificato
214	0.16	LC 32	2.00	1	0.23	LC 24	0.00	1	Verificato
215	0.25	LC 24	0.00	1	0.23	LC 24	0.00	1	Verificato
216	0.18	LC 24	0.00	1	0.36	LC 24	0.00	1	Verificato
217	0.29	LC 24	0.00	1	0.35	LC 24	0.00	1	Verificato
218	0.29	LC 24	1.00	1	0.30	LC 24	0.00	1	Verificato
219	0.18	LC 24	1.00	1	0.31	LC 24	0.00	1	Verificato
220	0.18	LC 24	2.00	1	0.36	LC 24	2.00	1	Verificato
221	0.28	LC 24	2.00	1	0.35	LC 24	2.00	1	Verificato
222	0.15	LC 24	2.00	1	0.23	LC 24	2.00	1	Verificato
223	0.24	LC 24	2.00	1	0.22	LC 24	2.00	1	Verificato
224	0.30	LC 16	0.00	1	0.32	LC 27	2.00	1	Verificato
225	0.32	LC 27	0.00	1	0.31	LC 16	2.00	1	Verificato
226	0.59	LC 16	0.00	1	0.74	LC 27	0.00	1	Verificato
227	0.61	LC 27	0.00	1	0.73	LC 16	0.00	1	Verificato
228	0.58	LC 27	2.00	1	0.76	LC 27	0.00	1	Verificato
229	0.52	LC 27	2.00	1	0.71	LC 16	0.00	1	Verificato
230	0.24	LC 18	2.00	3	0.27	LC 24	0.00	3	Verificato
231	0.21	LC 27	2.00	1	0.21	LC 16	0.00	1	Verificato
232	0.30	LC 18	0.00	3	0.63	LC 18	0.00	3	Verificato
233	0.21	LC 18	0.00	1	0.52	LC 18	0.00	1	Verificato
234	0.29	LC 18	0.00	1	0.83	LC 18	0.00	1	Verificato
235	0.37	LC 18	0.00	3	0.91	LC 18	0.00	3	Verificato
236	0.38	LC 18	0.00	2	0.75	LC 18	0.00	2	Verificato
237	0.34	LC 18	0.00	2	0.71	LC 18	0.00	2	Verificato
238	0.35	LC 18	2.00	1	0.74	LC 18	2.00	1	Verificato
239	0.34	LC 18	2.00	2	0.75	LC 18	2.00	1	Verificato
240	0.33	LC 18	2.00	1	0.67	LC 18	2.00	1	Verificato
241	0.38	LC 18	2.00	3	0.73	LC 18	2.00	3	Verificato
242	0.25	LC 27	2.00	1	0.68	LC 18	2.00	1	Verificato
243	0.32	LC 18	2.00	3	0.75	LC 18	2.00	3	Verificato
244	0.17	LC 27	2.00	1	0.28	LC 18	2.00	1	Verificato
245	0.24	LC 18	2.00	3	0.39	LC 18	2.00	3	Verificato
246	0.24	LC 27	0.00	1	0.24	LC 18	2.00	1	Verificato
247	0.31	LC 18	0.00	3	0.35	LC 18	2.00	3	Verificato
248 249	0.50 0.64	LC 27 LC 18	0.00	1 3	0.62	LC 18 LC 18	2.00	1 3	Verificato
447	0.04	пС ТΩ	0.00	3	0.80	TC 18	2.00	3	Verificato

250 251 252	0.63 0.50 0.31	LC 18 LC 27 LC 18	2.00 2.00 2.00	3 1 1	0.84 0.66 0.40	LC 18 LC 18 LC 18	2.00 2.00 0.00	3 1 1	Verificato Verificato Verificato
253	0.40	LC 18	2.00	3	0.53	LC 18	0.00	3	Verificato
254	0.16	LC 18	2.00	1	0.17	LC 18	0.00	1	Verificato
255	0.25	LC 18	2.00	4	0.30	LC 18	0.00	3	Verificato
256	0.11	LC 24	1.00	1	0.12	LC 24	1.00	1	Verificato
257	0.29	LC 24	1.00	1	0.29	LC 24	1.00	1	Verificato
258	0.18	LC 24	1.00	1	0.30	LC 24	1.00	1	Verificato
259	0.14	LC 30	0.00	2	0.10	LC 30	1.10	2	Verificato

5.1.3. Verifica prop. 1

PROP. 1 - BEAM n. 74 - SECTION IN X = 1.00

p.: T	'RAVI	TRASV IRRIGD	Trave:	74 Prop.	: 1 Sez.in: 1
		M1 = -0.5	52	M2	= 8.11
LC 1	.8	N = 16.5	9	V1	= -0.52
		V2 = 7.9	8	MT =	-6.28e-03
		Se	z. a Dopp	io T	
D	= 0.3	1800 B1 = 0.	0910 T1	= 0.0080	T2 = 0.0080
		T3 = 0.	.0053 B2	= 0.0910	
		Area	= :	2.39e-03	
		I11	= ;	1.32e-05	
		I22	=	1.01e-06	

STATIC PARAMETERS OF SECITION Altezza totale m Base inferiore 0.09 В1 m Spessore flangia inferiore Т1 8.00e-03 = m Spessore flangia superiore Т2 8.00e-03 m Spessore anima Т3 5.30e-03 Base superiore 0.09 m Location of elastic center of gravity = 0.05X1G,el m = 0.09 m X2G.el Location of plastic center of gravity = 0.05m X1G,pl = 0.09X2G,pl m Distance center of gravity - shear center = 0.00X1CT-X1G X2CT-X2G = 0.00

Section area		$A = 2.39e^{-1}$	03 m²	
Moment of inertia	axis 1	$I_{11} = 1.32e^{-t}$	05 m ⁴	
	axis 2	$I_{22} = 1.01e^{-t}$	06 m ⁴	
	axis 3	$J = 3.92e^{-1}$	08 m ⁴	
Polar moment respect to shear	center	$I_p = 1.37e-0.5$	5 m ⁴	
Warping constant		$I_{\omega} = 7.43e - 0.9$	9 m ⁶	
Radius of gyration	axis 1	$i_{11} = 0.07$	m	
	axis 2	$i_{22} = 0.02$	m	
Elastic section modulus	Top	$W_{1 \text{ sup,el}} = 1.46e^{-1}$		
	Lower	$W_{1 \text{ inf,el}} = 1.46e^{-6}$		
Elastic section modulus	Right	$W_{2 dx,el} = 2.22e-0$		
	Left	$W_{2 \text{ sx,el}} = 2.22e^{-t}$		
Plastic section modulus	axis 1	$W_{1,p1} = 1.61e-0$		
	axis 2	$W_{2,p1} = 3.43e-0$		
Shear area	axis 1	$A_{V1,p1} = 1.46e-0$		
	axis 2	$A_{V2,p1} = 9.12e^{-t}$	04 m²	
BEAM'S CHARACTERISTIC:				
Length		1.00	m	
Multiplier for inflection	axis 1	$\beta_1 = 1.00$		
1	axis 2	$\beta_2 = 1.00$		
		•		
	axis 3	$\beta_3 = 1.00$		
Attributes for the calculation	n of instability			
Diagram	Ψ		$m_{ m LT}$	Cm
Plan 1 Tipo 2	0.00	*	0.60	0.60
Plan 2 Tipo 2	0.00		0.60	0.60
MATERIAL'S CHARACTERISTIC:				
Steel type		S355		
Processing		Laminata		
Modulus of elasticity		E = 206.00	GPa	
Yield strength	(t < 40mm)	$f_y = 355.00$	MPa	
Ultimate strength	(t < 40mm)	$f_u = 510.00$	MPa	
Yield strength	(t > 40mm)	$f_y = 335.00$	MPa	
Ultimate strength	(t > 40mm)	$f_u = 470.00$	MPa	
Partial safety factor for res	sistance	$\gamma_{M0} = 1.05$		
Partial safety factor for ins	stability	$\gamma_{M1} = 1.05$		
TAMEDANA T. HODGEG				
INTERNAL FORCES:				
Axial force		AF = 1.66e01	kN	
Shear forces	direction 1	V1 = -5.20e-01	kN	
J.1.Car 101069	direction 1	V1 = -3.20e-01 V2 = 7.98e00	kN	
Bending moments	direction 2	M1 = -5.20e-01	kNm	
Donaring momento	direction 1	M1 = -3.20e-01 M2 = 8.11e00	kNm	
Torque moment		MT = -6.28e-03	kNm	
RESISTANCE OF CROSS-SECTIONS	(EN 1993-1-1 § 6	.2):	·	
Class of section for the int	ernal force cons			
		Cl = Classe	1	
Axis with greater inertia		y-y = 1-1		
Axis with less inertia		z-z = 2-2		
Avial registance		N _ 000 05	l-NI	
Axial resistance		$N_{Rd} = 808.05$	kN	
Design plastic shear resistar	ice avie "	$V_{pl,y,Rd} = 177.94$	kN	
Reduction for torsion	исе акто й	$V_{pl,y,Rd} = 1/7.94$ coeff = 1.00	VIA	
Veduccion for Colsion		$V_{pl,y,T,Rd} = 1.00$ $V_{pl,y,T,Rd} = 177.48$	kN	
		v рт, у, т, ка — 1 / / . 40	12.TA	
Design plastic shear resistan	ice axis z	$V_{pl,z,Rd} = 284.21$	kN	
Reduction for torsion		coeff = 1.00		
		$V_{pl,z,T,Rd} = 283.46$	kN	
		1 , , ,		
Design resistance for bending	axis y	$M_{y,Rd} = 54.38$	kNm	
Reduction for shear	=	coeff = 1.00		
		$M_{y,V,Rd} = 54.38$	kNm	
Design resistance for bending	axis z	$M_{z,Rd} = 11.59$	kNm	
Reduction for shear		coeff = 1.00		
		$M_{z,V,Rd} = 11.59$	kNm	
Design torsional resistance		$T_{Rd} = 0.96$	kNm	

Verification of plastic resistance for axial and bending moment $(N_{Ed}/N_{Rd}) + (M_{y,Ed}/M_{y,Rd}) + (M_{z,Ed}/M_{z,Rd}) \le 1$ Verificato Verification of plastic resistance for shear $(V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}) \le 1$ 0.05 Verificato Verification of elastic resistance for torsion 6.56e-03 Verificato $(T_{Ed}/T_{Rd}) \le 1$ $F_{R-T} =$ Verification of elastic resistance for tensile stress $\tau_{\rm Ed} \cdot \sqrt{(3)} \cdot \gamma_{\rm M0} / f_{\rm y} \leq 1$ 0.05 Verificato $F_{R-\tau} =$

BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3):

Class of section for the internal force considered:

Classe 1

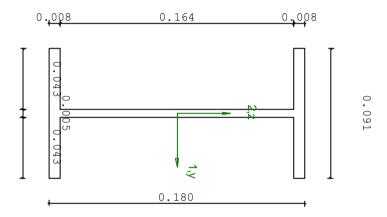
Axial force Bending moment

 $N_{ED} = 1.66e01$ kN -5.20e-01 kNm M_z , ED = $M_{y,ED} =$ 8.11e00 kNm

-	Critical	Buckling			
Axis	force	length	slenderness	factor	
	Pcr [kN]	ℓ_0 [m]	λ^*	χ	
У	27296.36	1.00	0.18	1.00	
Z	2093.34	1.00	0.64	0.82	
θ	3233.45	1.00	0.51	0.88	
min	2093.34		0.64	0.82	
	Mcr [Nmm]	ℓ ₀ [mm]	$\lambda^{\star}{}_{\scriptscriptstyle{\mathrm{LT}}}$	$\chi_{ t LT}$	
Bending/torsion	86.90	1.00	0.81	0.90	
Design buckling	resistance	Min	$N_{b,Rd} =$	6.61e02 kN	
		axis y	$N_{b,y,Rd} =$	8.08e02 kN	
		axis z	$N_{b,z,Rd} =$	6.61e02 kN	
Design buckling	resis. moment	axis y	$M_{b, y, Rd} =$	4.90e01 kNm	
		axis z	$M_{z,Rd} =$	1.16e01 kNm	
Interaction fac	tors		k _{yy} =	0.60	
			k _{yz} =	0.36	
			k _{zy} =	1.00	
			k _{zz} =	0.60	

Buckling resistance for uniform member in axial compression

 $N_{Ed}/N_{b,Rd} \leq 1$ $F_{I-N} = 0.00$


(Verificato)

Buckling resistance for uniform member in bending and axial compression

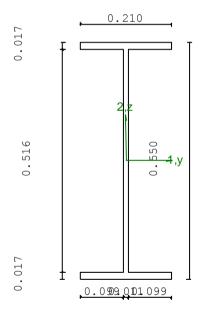
 $(N_{\rm Ed}/N_{\rm b,y,Rd}) + k_{yy} (M_{y,\rm Ed}/M_{\rm b,y,Rd}) + k_{yz} (M_{z,\rm Ed}/M_{z,\rm Rd}) \le 1$ $F_{\rm R-PF,y} = 0.19$ (Verificato) $(N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1$ $F_{R-PF,z} = 0.12$ (Verificato)

PROP. 1 - BEAM n. 93 - SECTION IN X = 0.00

Grp.	: Traverse Trave: 9	3 Prop.: 1 Sez.in: 0.00			
	M1 = 0.16	M2 = -0.02			
LC 31	N = -78.10	V1 = -0.35			
	V2 = -2.97e - 05	MT = 3.72e-07			
	Sez. a Doppio T				
D =	0.1800 B1 = 0.0910	T1 = 0.0080 T2 = 0.0080			
	T3 = 0.0053	B2 = 0.0910			
	Area	= 2.39e-03			
	I11	= 1.32e-05			
	I22	= 1.01e-06			

STATIC PARAMETERS OF SECITION				
Altezza totale		D =	0.18	m
Base inferiore		B1 =	0.09	m
Spessore flangia inferiore		T1 =	8.00e-03	m
Spessore flangia superiore		T2 =	8.00e-03	m
Spessore anima		T3 =	5.30e-03	m
Base superiore		B2 =	0.09	m
Location of elastic center of g	ravity	X1G,el	= 0.05	m
		X _{2G,el}	= 0.09	m
Location of plastic center of g	ravity	X _{1G,pl}	= 0.05	m
		X2G,pl	= 0.09	m
Distance center of gravity - si	hear center	X1CT-X1G	= 0.00	m
		X2CT-X2G	= 0.00	m
Section area		A =	2.39e-03	m²
Moment of inertia	axis 1	I ₁₁ =	1.32e-05	m ⁴
	axis 2	I ₂₂ =	1.01e-06	m ⁴
	axis 3	J =	3.92e-08	m ⁴
Polar moment respect to shear co	enter	Ip =	1.37e-05	m ⁴
Warping constant		I_m =	7.43e-09	m ⁶
Radius of gyration	axis 1	i ₁₁ =	0.07	m
	axis 2	i ₂₂ =	0.02	m
			***-	
Elastic section modulus	Top	W _{1 sup.el} =	1.46e-04	m³
	Lower		1.46e-04	m ³
Elastic section modulus	Right		2.22e-05	m³
	Left		2.22e-05	m ³
Plastic section modulus	axis 1		1.61e-04	m ³
	axis 2		3.43e-05	m³
Shear area	axis 1		1.46e-03	m²
011001 0100	axis 2		9.12e-04	m ²
	U1110 2	71/2/PI	J.12C 04	111

Length				2.80	m	
Multiplier for	inflection	axis 1	$\beta_1 =$	1.00		
		axis 2	$\beta_2 =$	1.00		
		axis 3	$\beta_3 =$	1.00		
		axis J	p ₃ –	1.00		
Attributes for	the calculati	on of instabilit	V			
	Diagram	Ψ	k _c		$m_{ m LT}$	Cm
Plan 1	Tipo 9	1.00	0.90		.51	0.53
Plan 2	Tipo 2	0.99	1.00).99	0.99
	ī					
MATERIAL'S CHAF	RACTERISTIC:					
0+1 +			0355			
Steel type Processing			S355 Laminat	2		
Modulus of elas	sticity		E =	206.00	GPa	
Yield strength	, cicici	(t < 40mm)	f _v =	355.00	MPa	
Ultimate strend	r+h	(t < 40mm)	fu =	510.00	MPa	
Yield strength	, С11	(t > 40mm)	f _v =	335.00	MPa	
Ultimate strend	ıt.h	(t > 40mm)	fu =	470.00	MPa	
Partial safety	•	,		1.05	111.0	
-			γ _{м0} =			
Partial safety	ractor for in	ıstabıılty	$\gamma_{\text{M1}} =$	1.05		
INTERNAL FORCES	3:					
Axial force			AF = -	7 81601	kN	
Axiai force Shear forces		direction 1		7.81eU1 3.48e-01	kN	
onear rordes		direction 1		2.97e-05	kN	
Bending moments		direction 2		2.97e-05 1.58e-01	kNm	
Demoring moments	•	direction 1		1.77e-02	kNm	
Torque moment		GIIGCCIOII Z		3.72e-07	kNm	
RESISTANCE OF C	ROSS-SECTIONS	6 (EN 1993-1-1 §	6.2):			
Class of secti	on for the in	ternal force con		01	2	
			Cl =	Classe	3 m	
			C1 = $y = 0$			
Point with grea	atest internal		C1 = y = 0 $z = -0$.05 0.09	m	
Point with grea	atest internal		$\begin{array}{rcl} \text{Cl} &=& \\ y &=& 0 \\ z &=& -6 \end{array}$ $\sigma_{\text{pf}} &=& -3 \end{array}$.05 0.09 39924.62	m m MPa	
Point with grea	atest internal		C1 = y = 0 $z = -0$.05 0.09 39924.62	m m	
Point with grea Axial+bending s Maximum tensile	atest internal	forces	$C1 = y = 0$ $z = -0$ $\sigma_{pf} = -0$ $\tau_{max} = 30$.05 0.09 39924.62 55.61	m m MPa MPa	
Point with grea Axial+bending s Maximum tensile	atest internal	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$	$C1 = y = 0$ $z = -0$ $\sigma_{pf} = -0$ $\tau_{max} = 3$ $\sigma_{VM} = 3$.05 0.09 39924.62 55.61	m m MPa MPa MPa	
Point with grea Axial+bending s Maximum tensile	atest internal	forces	$C1 = y = 0$ $z = -0$ $\sigma_{pf} = -0$ $\tau_{max} = 30$.05 0.09 39924.62 55.61	m m MPa MPa	
Point with great Axial+bending s Maximum tensile	etress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\rm d}$	$C1 = y = 0$ $z = -1$ $\sigma_{pf} = -1$ $\tau_{max} = 3$ $\sigma_{VM} = 3$ $F_{R} = 0$.05 0.09 39924.62 55.61	m m MPa MPa MPa	,
Point with great Axial+bending s Maximum tensile	etress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$	$C1 = y = 0$ $z = -1$ $\sigma_{pf} = -1$ $\tau_{max} = 3$ $\sigma_{VM} = 3$ $F_{R} = 0$.05 0.09 39924.62 55.61	m m MPa MPa MPa	,
Point with great Axial+bending s Maximum tensile Ideal stress	stress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\rm d}$	C1 = $y = 0$ $z = -6$ $\sigma_{pf} = -6$ $\tau_{max} = 30$ $\sigma_{VM} = 30$ $\sigma_{R} = 0$.05 0.09 39924.62 55.61	m m MPa MPa MPa	
Point with great Axial+bending s Maximum tensile Ideal stress	stress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d DERS (EN 1993-1-1	C1 = $y = 0$ $z = -6$ $\sigma_{pf} = -6$ $\tau_{max} = 30$ $\sigma_{VM} = 30$ $\sigma_{R} = 0$.05 0.09 39924.62 55.61	m m MPa MPa MPa Verificato	,
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST	stress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d DERS (EN 1993-1-1	C1 = $y = 0$ $z = -6$ $\sigma_{pf} = -3$ $\tau_{max} = 33$ $\sigma_{VM} = 33$ $F_R = 0$ S 6.3): sidered: C1 =	.05 0.09 39924.62 55.61 9924.62 .12	m m MPa MPa MPa Verificato	,
Point with great Axial+bending sometime Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force	stress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d DERS (EN 1993-1-1	C1 = $y = 0$ $z = -6$ $\sigma_{pf} = -3$ $\tau_{max} = 33$ $\sigma_{VM} = 33$ $F_R = 0$ \$ 6.3): sidered:	.05 0.09 39924.62 55.61 9924.62 .12	m m MPa MPa MPa Verificato	
Point with greater Axial+bending sometime Maximum tensile Ideal stress BUCKLING RESIST Class of section	stress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d DERS (EN 1993-1-1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.05 0.09 39924.62 55.61 9924.62 .12 Classe	m m MPa MPa MPa Verificate 3 kN -01 kNm	,
Point with greater Axial+bending sometime Maximum tensile Ideal stress BUCKLING RESIST Class of section	stress e stress	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d DERS (EN 1993-1-1	C1 = $y = 0$ $z = -0$ $\sigma_{pf} = -0$ $\sigma_{vM} = 30$ $F_{R} = 0$ S 6.3): sidered: $C1 = 0$ $M_{z,ED} = 0$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e-	m m MPa MPa MPa Verificate 3 kN -01 kNm	,
Point with great Axial+bending so Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment	etress e stress CANCE FOR MEME con for the in	forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 sternal force cons	S 6.3): Sidered: NED = My,ED = My,ED = My,ED = My = 0 X = 0	.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato	
Point with greater Axial+bending so Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment	extress CANCE FOR MEME on for the in cal loads Critical	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ BERS (EN 1993-1-1 sternal force constants)	$C1 = y = 0$ $z = -6$ $\sigma_{pf} = -6$ $\tau_{max} = 30$ $\sigma_{VM} = 30$ $F_{R} = 0$ $S 6.3):$ sidered: $C1 = 0$ $M_{Z,ED} = 0$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm	,
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment	etress e stress CANCE FOR MEME con for the in	forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 sternal force cons	$C1 = y = 0$ $z = -6$ $\sigma_{pf} = -6$ $\tau_{max} = 30$ $\sigma_{VM} = 30$ $F_{R} = 0$ $S 6.3):$ sidered: $C1 = M_{Z,ED} = M_{Y,ED} = 0$ $S - G = 0$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato	
Point with greater Axial+bending so Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment	extress CANCE FOR MEME on for the in cal loads Critical	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ BERS (EN 1993-1-1 sternal force constants)	$C1 = y = 0$ $z = -6$ $\sigma_{pf} = -6$ $\tau_{max} = 30$ $\sigma_{VM} = 30$ $F_{R} = 0$ $S 6.3):$ sidered: $C1 = 0$ $M_{Z,ED} = 0$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm	
Point with greater Axial+bending so Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment	extress CANCE FOR MEME Con for the in Cal loads Critical force	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 sternal force constants)	$C1 = y = 0$ $z = -6$ $\sigma_{pf} = -6$ $\tau_{max} = 30$ $\sigma_{VM} = 30$ $F_{R} = 0$ $S 6.3):$ sidered: $C1 = M_{Z,ED} = M_{Y,ED} = 0$ $S - G = 0$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm	
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critical	Cal loads Critical force Per [kN]	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ BERS (EN 1993-1-1) sternal force constants $\sigma_{\text{d}} = \frac{1}{2} \frac{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2$	$\begin{array}{cccc} \text{Cl} &=& \\ y &=& 0 \\ z &=& -\epsilon \\ & \\ \sigma_{\text{pf}} &=& -\epsilon \\ \tau_{\text{max}} &=& 3\delta \\ & \\ F_{\text{R}} &=& 0 \\ & \\ & \\ \text{S 6.3):} \\ & \\ \text{S idered:} \\ & \\ \text{Cl} &=& \\ & \\ \text{Mg,ED} &=& \\ & \\ \text{Mg,ED} &=& \\ & \\ & \\ \text{On-dimensions} \\ & \\ \text{S lendernes} \\ & \\ \lambda^* \end{array}$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction	
Point with greater Axial+bending so Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critical Axis Y	Critical force P _{cr} [kN] 3481.68	Forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ Force constant force constant $\sigma_{\text{def}} = \frac{1}{2.80}$	S 6.3): Sidered: C1 = NED = - My = 0 Z = -6 σpf = -3 σwm = 33 FR = 0 S 6.3): Sidered: C1 = NED = - My,ED = On-dimensic Slendernes λ* 0.49	.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93	,
Point with greater and a second section of critical stress and section and section and section are section as a section are section	Cal loads Critical force Por [kN] 3481.68 267.01	Forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ Force constant force constant $\sigma_{\text{d}} = \frac{1}{2} $	S 6.3): Sidered: C1 = NED = - My, ED = N* 0.49 1.78	.05 0.09 339924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93	
Point with greater and a property of the prope	Critical force Pcr [kN] 3481.68 267.01 894.58	Forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ Force constant force constant $\sigma_{\text{d}} = \frac{1}{2} $	S = 0 $S = 0$ $S =$.05 0.09 339924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93	,
Point with greater and a property of the prope	Critical force Por [kN] 3481.68 267.01 894.58 267.01	Forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1) atternal force considered forc	S = 0 $S = 0$ $S =$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93 0.26 0.61	
Point with great Axial+bending so Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critical Axis Y Z 0 min	Critical force Pcr [kN] 3481.68 267.01 Mcr [Nmm]	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ SERS (EN 1993-1-1 aternal force constants) $\frac{\text{Buckling }}{\text{length}}$ $\ell_0 \text{ [m]}$ 2.80 2.80 2.80 $\ell_0 \text{ [mm]}$	$C1 = $ $y = 0$ $z = -6$ $\sigma_{pf} = -3$ $\tau_{max} = 33$ $\sigma_{VM} = 33$ $F_R = 0$ Soldered: $C1 = $ $M_{z,ED} = $ $M_{y,ED} = $ $M_{z,ED} = $.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93 0.26 0.61	
Point with great Axial+bending so Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critical Axis Y Z 0 min	Critical force Pcr [kN] 3481.68 267.01 Mcr [Nmm]	Forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1) atternal force considered forc	S = 0 $S = 0$ $S =$.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93 0.26 0.61	
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critic Axis Y Z 0 min Bending/torsion	CANCE FOR MEME Cal loads Critical force Por [kN] 3481.68 267.01 894.58 267.01 Mor [Nmm] 1 24.34	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ SERS (EN 1993-1-1 aternal force constants) $\frac{\text{Buckling }}{\text{length}}$ $\ell_0 \text{ [m]}$ 2.80 2.80 2.80 $\ell_0 \text{ [mm]}$	$C1 = $ $y = 0$ $z = -6$ $\sigma_{pf} = -3$ $\tau_{max} = 33$ $\sigma_{VM} = 33$ $F_R = 0$ Soldered: $C1 = $ $M_{z,ED} = $ $M_{y,ED} = $ $M_{z,ED} = $.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor X 0.93 0.26 0.61 0.26 XLT 0.39	
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critic Axis Y z θ min Bending/torsion	CANCE FOR MEME Cal loads Critical force Por [kN] 3481.68 267.01 894.58 267.01 Mor [Nmm] 1 24.34	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ BERS (EN 1993-1-1) thernal force constitution $\frac{\text{Buckling }}{\text{length}}$ $\ell_0 \text{ [m]}$ 2.80 2.80 2.80 $\ell_0 \text{ [mm]}$ 2.80 Min	C1 = y = 0 z = -6 σ _{pf} = -5 τ _{max} = 33 σ _{VM} = 35 F _R = 0 S 6.3): sidered: C1 = N _{ED} = -6 M _{z,ED} = M _{y,ED} = 0n-dimensic slendernes λ* 0.49 1.78 0.97 1.78 λ* _{LT} 1.46 N _{b,Rd} =	.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m m MPa MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor X .93 .26 .61 .26 XLT .39	
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critic Axis y z 0	CANCE FOR MEME Cal loads Critical force Por [kN] 3481.68 267.01 894.58 267.01 Mor [Nmm] 1 24.34	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ BERS (EN 1993-1-1) Iternal force considered by the second length $\ell_0 \text{ [m]}$ 2.80 2.80 2.80 $\ell_0 \text{ [mm]}$ 2.80	C1 = y = 0 z = -6 $\sigma_{pf} = -3$ $\tau_{max} = 33$ $\sigma_{VM} = 33$ $F_R = 0$ S 6.3): sidered: C1 = $M_{z,ED} = -6$ $M_{y,ED} = -6$ on-dimensic slendernes λ^* 0.49 1.78 0.97 1.78 λ^*_{LT} 1.46	.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93 .26 .61 .26 .11 .26 .139	
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critical Axis Y Z 0 min Bending/torsion	CANCE FOR MEME Cal loads Critical force Por [kN] 3481.68 267.01 894.58 267.01 Mor [Nmm] 1 24.34	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ BERS (EN 1993-1-1) thernal force constant $\sigma_{\text{def}} = \frac{\sigma_{\text{def}}}{\sigma_{\text{def}}}$ length $\theta_{\text{o}} = \frac{\sigma_{\text{def}}}{\sigma_{\text{def}}}$ 2.80 2.80 2.80 $\theta_{\text{o}} = \frac{\sigma_{\text{def}}}{\sigma_{\text{def}}}$ Min axis y	C1 = y = 0 z = -6 σ _{pf} = -5 τ _{max} = 33 σ _{VM} = 35 F _R = 0 S 6.3): sidered: C1 = N _{ED} = - M _{Z,ED} = M _{y,ED} = 0n-dimensic slendernes λ* 0.49 1.78 0.97 1.78 λ* _{LT} 1.46 N _{b,Rd} = N _{b,y,Rd} =	.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93 .26 .61 .26 .11 .26 .139	
Point with great Axial+bending s Maximum tensile Ideal stress BUCKLING RESIST Class of section Axial force Bending moment Table of critic Axis Y z θ min Bending/torsion	Cal loads Critical force Pcr [kN] 3481.68 267.01 894.58 267.01 Mcr [Nmm] 24.34 g resistance	forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ σ_{VM}/f_{d	C1 = y = 0 z = -6 σ _{pf} = -5 τ _{max} = 33 σ _{VM} = 35 F _R = 0 S 6.3): sidered: C1 = N _{ED} = - M _{Z,ED} = M _{y,ED} = 0n-dimensic slendernes λ* 0.49 1.78 0.97 1.78 λ* _{LT} 1.46 N _{b,Rd} = N _{b,y,Rd} =	.05 0.09 39924.62 55.61 9924.62 .12 Classe 7.81e01 1.58e- -1.80e-	m m MPa MPa MPa MPa Verificato 3 kN -01 kNm -02 kNm uction actor 10.93 .26 .61 .26 .11 .26 .139	




```
Interaction factors
                                                                kyy =
                                                                              1.03
                                                                kyz =
                                                                              0.65
                                                               k<sub>zy</sub> =
                                                                              0.97
                                                                              0.65
Buckling resistance for uniform member in axial compression
                                                                                          (Verificato)
    N_{Ed}/N_{b,Rd} \leq 1
                                                                F_{I-N} = 0.38
Buckling resistance for uniform member in bending and axial compression
    (N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yz} (M_{z,Ed}/M_{z,Rd}) \le 1
                                                              F_{R-PF,y} = 0.12
                                                                                          (Verificato)
    (N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1
                                                             F_{R-PF,z} = 0.39
                                                                                          (Verificato)
```

5.1.4. Verifica prop. 2

PROP. 2 - BEAM n. 249 - SECTION IN X = 0.00

p.:	TR	AVI PRINCIPALI Trave:	249 Prop.: 2 Sez.in: 0.			
		M1 = -5.33	M2 = -385.50			
LC	18	N = -503.85	V1 = 3.69			
		V2 = 109.23	MT = 0.02			
	Sez. a Doppio T					
I) =	0.5500 B1 = 0.2100 T	T1 = 0.0172 $T2 = 0.0172$			
		T3 = 0.0111	B2 = 0.2100			
	Area :		= 1.34e-02			
	I11		= 6.71e-04			
		I22 :	= 2.67e-05			

STATIC PARAMETERS OF SECITION			
Altezza totale	D =	0.55	m
Base inferiore	B1 =	0.21	m
Spessore flangia inferiore	T1 =	0.02	m
Spessore flangia superiore	T2 =	0.02	m
Spessore anima	T3 =	0.01	m
Base superiore	B2 =	0.21	m
Location of elastic center of gravity	X1G,el	= 0.11	m
	X _{2G} ,el	= 0.28	m
Location of plastic center of gravity	X _{1G} ,pl	= 0.11	m
	X2G,pl	= 0.28	m
Distance center of gravity - shear center	$x_{1CT}-x_{1G}$	= 0.00	m
	X2CT-X2G	= 0.00	m

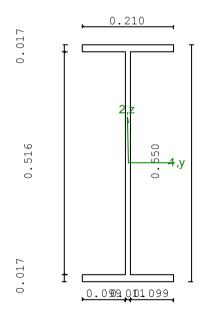

Section area					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Section area		A = 1.34e-0	2 m²	
Axis 3	Moment of inertia	axis 1	$I_{11} = 6.71e-0$	4 m ⁴	
Polar moment respect to shear center					
Marping constant		axis 3	J = 9.48e-0	7 m ⁴	
Radius of gyration	Polar moment respect to sh	ear center	$I_p = 6.66e-04$	m ⁴	
Elastic section modulus Top	Warping constant		$I_{\omega} = 1.88e-06$	m ⁶	
Elastic section modulus Top Wi mpst 2.44e-03 m²	Radius of gyration	axis 1	$i_{11} = 0.22$	m	
Lower No. Lower No. Lower 2.44e-03 m²		axis 2	$i_{22} = 0.04$	m	
Lower No. Lower No. Lower 2.44e-03 m²					
Elastic section modulus	Elastic section modulus	-	=		
Left Wise, set 2.54e-04 m² Mis 1 Mis 1 Mis 2.66e-03 m² Mis 1 Mis					
Plastic section modulus	Elastic section modulus	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Plastic section modulus		**		
	Choor area		, 1		
EEAM'S CHARACTERISTIC: Length Multiplier for inflection	Silear area				
Length		dais 2	71v2,p1 3.91C 0.	5 111	
	BEAM'S CHARACTERISTIC:				
Multiplier for inflection axis 1 β1 = 1.00 axis 2 β2 = 2.00 axis 3 β3 = 2.00 axis 3 β3 = 1.00	Length		2.00	m	
	-	axis 1	$\beta_1 = 1.00$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		•		
Attributes for the calculation of instability Diagram V			•		
Diagram W			r =		
Diagram W	Attributes for the calcula	tion of instability			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-			NLT	Cm
Plan 2 Tipo 2 0.46 0.85 0.78 0.78 MATERIAL'S CHARACTERISTIC: Steel type		•			
Steel type Processing Laminata E = 206.00 GPa Yield strength (t < 40mm) $f_v = 355.00$ MFa Ultimate strength (t < 40mm) $f_v = 355.00$ MFa Ultimate strength (t < 40mm) $f_v = 510.00$ MFa Ultimate strength (t > 40mm) $f_v = 150.00$ MFa Ultimate strength (t > 40mm) $f_v = 150.00$ MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa Partial safety factor for resistance $f_v = 10.05$ MFa Torous MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa MFa Ultimate strength (t > 40mm) $f_v = 10.05$ MFa Ultimate strength (t > 40mm) f	±		0.85	.78	0.78
Processing Modulus of elasticity $E = 206.00 \text{ GPa}$ Yield strength $(t < 40\text{mm})$ $f_y = 355.00 \text{ MPa}$ Ultimate strength $(t < 40\text{mm})$ $f_y = 355.00 \text{ MPa}$ Vield strength $(t < 40\text{mm})$ $f_y = 355.00 \text{ MPa}$ Ultimate strength $(t > 40\text{mm})$ $f_v = 510.00 \text{ MPa}$ Vield strength $(t > 40\text{mm})$ $f_v = 335.00 \text{ MPa}$ Ultimate strength $(t > 40\text{mm})$ $f_v = 470.00 \text{ MPa}$ Partial safety factor for resistance $y_{N0} = 1.05$ Partial safety factor for instability $y_{N1} = 1.05$ TIMERNAL FORCES: Axial force $ \begin{array}{c} AF = -5.04\text{eO2} & \text{kN} \\ \text{Shear forces} & \text{direction 1} & \text{V1} = 3.69\text{eO0} & \text{kN} \\ \text{direction 2} & \text{V2} = 1.09\text{eO2} & \text{kN} \\ \text{Bending moments} & \text{direction 1} & \text{M1} = -5.33\text{eO0} & \text{kNm} \\ \text{direction 2} & \text{V2} = 1.36\text{e-O2} & \text{kNm} \\ \text{Torque moment} & \text{MT} = 1.86\text{e-O2} & \text{kNm} \\ \text{RESISTANCE OF CROSS-SECTIONS (EN 1993-1-1 § 6.2):} \\ \hline Class of section for the internal force considered: C1 = Classe 3 Point with greatest internal forces y = -0.11 & \text{m} \\ z = -0.28 & \text{m} \\ \text{Axial+bending stress} & \sigma_{pf} = -2.17\text{eO5} & \text{MPa} \\ \text{Teax} = 19732.88 & \text{MPa} \\ \text{Ideal stress} & \sigma_{ym} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} & \sigma_{ym} = 2.17\text{eO5} & \text{MPa} \\ \sigma_{ym}/f_d & F_R = 0.64 & \text{Verificato} \\ \hline \\ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): \\ \hline Class of section for the internal force considered: C1 = Classe 3 \\ \text{Axial force} & N_{ED} = -5.04\text{eO2} & \text{kN} \\ M_{H,ED} = -5.33\text{eO0} & \text{kNm} \\ \end{array}$	MATERIAL'S CHARACTERISTIC:				
Processing Modulus of elasticity $E = 206.00 \text{ GPa}$ Yield strength $(t < 40\text{mm})$ $f_y = 355.00 \text{ MPa}$ Ultimate strength $(t < 40\text{mm})$ $f_y = 355.00 \text{ MPa}$ Vield strength $(t < 40\text{mm})$ $f_y = 355.00 \text{ MPa}$ Ultimate strength $(t > 40\text{mm})$ $f_v = 510.00 \text{ MPa}$ Vield strength $(t > 40\text{mm})$ $f_v = 335.00 \text{ MPa}$ Ultimate strength $(t > 40\text{mm})$ $f_v = 470.00 \text{ MPa}$ Partial safety factor for resistance $y_{N0} = 1.05$ Partial safety factor for instability $y_{N1} = 1.05$ TIMERNAL FORCES: Axial force $ \begin{array}{c} AF = -5.04\text{eO2} & \text{kN} \\ \text{Shear forces} & \text{direction 1} & \text{V1} = 3.69\text{eO0} & \text{kN} \\ \text{direction 2} & \text{V2} = 1.09\text{eO2} & \text{kN} \\ \text{Bending moments} & \text{direction 1} & \text{M1} = -5.33\text{eO0} & \text{kNm} \\ \text{direction 2} & \text{V2} = 1.36\text{e-O2} & \text{kNm} \\ \text{Torque moment} & \text{MT} = 1.86\text{e-O2} & \text{kNm} \\ \text{RESISTANCE OF CROSS-SECTIONS (EN 1993-1-1 § 6.2):} \\ \hline Class of section for the internal force considered: C1 = Classe 3 Point with greatest internal forces y = -0.11 & \text{m} \\ z = -0.28 & \text{m} \\ \text{Axial+bending stress} & \sigma_{pf} = -2.17\text{eO5} & \text{MPa} \\ \text{Teax} = 19732.88 & \text{MPa} \\ \text{Ideal stress} & \sigma_{ym} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} & \sigma_{ym} = 2.17\text{eO5} & \text{MPa} \\ \sigma_{ym}/f_d & F_R = 0.64 & \text{Verificato} \\ \hline \\ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): \\ \hline Class of section for the internal force considered: C1 = Classe 3 \\ \text{Axial force} & N_{ED} = -5.04\text{eO2} & \text{kN} \\ M_{H,ED} = -5.33\text{eO0} & \text{kNm} \\ \end{array}$					
Modulus of elasticity (t < 40mm) $f_{\gamma} = 355.00$ GPa Yield strength (t < 40mm) $f_{\gamma} = 355.00$ MPa Ultimate strength (t < 40mm) $f_{\nu} = 510.00$ MPa Yield strength (t > 40mm) $f_{\nu} = 335.00$ MPa Yield strength (t > 40mm) $f_{\nu} = 335.00$ MPa Ultimate strength (t > 40mm) $f_{\nu} = 335.00$ MPa Partial safety factor for resistance $\gamma_{90} = 1.05$ Partial safety factor for instability $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor $\gamma_{R2} = 1.05$ Partial safety factor $\gamma_{R1} = 1.05$ Partial safety factor					
Yield strength (t < 40mm) $f_y = 355.00$ MPa Ultimate strength (t < 40mm) $f_u = 510.00$ MPa Yield strength (t > 40mm) $f_y = 335.00$ MPa Yield strength (t > 40mm) $f_y = 335.00$ MPa Ultimate strength (t > 40mm) $f_u = 470.00$ MPa Partial safety factor for resistance $\gamma_{MO} = 1.05$ Partial safety factor for instability $\gamma_{MI} = 1.05$ Partial safety factor fa				0.5	
Ultimate strength (t < 40mm) $f_{y} = 510.00$ MPa Yield strength (t > 40mm) $f_{y} = 335.00$ MPa Ultimate strength (t > 40mm) $f_{y} = 335.00$ MPa Ultimate strength (t > 40mm) $f_{y} = 335.00$ MPa Partial safety factor for resistance $\gamma_{M0} = 1.05$ Partial safety factor for instability $\gamma_{M1} = 1.05$ Partial safety factor instability $\gamma_{M1} = 1.05$ Partial safety factor for instability $\gamma_{M1} = 1.05$ Partial safety factor instability $\gamma_{M2} = 1.05$ Partial s	-	/ - 2 40 1			
Yield strength (t > 40mm) fy = 335.00 MPa Ultimate strength (t > 40mm) fu = 470.00 MPa Partial safety factor for resistance $\gamma_{MO} = 1.05$ Partial safety factor for instability $\gamma_{MI} = 1.05$ TINTERNAL FORCES: Axial force AF = -5.04e02 kN AF = -5.34e00 kN AF = -5.34e00 kN AF = -5.34e00 kN AF = -3.34e00 kN AF = -3.4e000 kN A	-		•		
Ultimate strength (t > 40mm) $f_u = 470.00$ MPa Partial safety factor for resistance $\gamma_{MO} = 1.05$ Partial safety factor for instability $\gamma_{MI} = 1.05$ TNTERNAL FORCES: Axial force AF = -5.04e02 kN direction 1 V1 = 3.69e00 kN direction 2 V2 = 1.09e02 kN direction 1 M1 = -5.33e00 kNm direction 2 M2 = -3.85e02 kNm Date of the internal force of the internal force considered: C1 = Classe 3 Foint with greatest internal forces $\gamma_{MI} = -0.11$ m and $\gamma_{MI} = -0.28$ m Axial+bending stress $\gamma_{MI} = -0.28$ m Axial-bending stress $\gamma_{MI} = -0.28$ m Axial-bending stress $\gamma_{MI} = -0.64$ verificato	=				
Partial safety factor for resistance Partial safety factor for instability $\gamma_{M1} = 1.05$ INTERNAL FORCES: Axial force AF = -5.04e02 kN Shear forces direction 1 V1 = 3.69e00 kN direction 2 V2 = 1.09e02 kN Shear forces direction 2 M2 = -5.33e00 kNm direction 2 M2 = -3.85e02 kNm direction 2 M2 = -3.85e02 kNm Shear force MT = 1.86e-02 kNm Shear force of the internal force considered: C1 = Classe 3 Point with greatest internal force considered: C1 = Classe 3 Point with greatest internal force $\gamma_{M1} = -0.28$ m Axial+bending stress $\gamma_{M2} = -0.11$ m $\gamma_{M3} = -0.28$ m Axial+bending stress $\gamma_{M2} = -0.11$ m $\gamma_{M3} = -0.28$ m Axial+bending stress $\gamma_{M2} = -0.11$ m $\gamma_{M3} = -0.28$ m Axial+bending stress $\gamma_{M2} = -0.28$ m Axial+bending stress $\gamma_{M3} = -0.64$ Verificato BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: C1 = Classe 3 Axial force $\gamma_{M3} = -5.04e02$ kN	-		-		
Partial safety factor for instability $\gamma_{MI} = 1.05$ TNTERNAL FORCES: Axial force	•			111 (4	
INTERNAL FORCES: Axial force Shear forces $direction 1 V1 = 3.69e00 kn$ $direction 2 V2 = 1.09e02 kn$ Bending moments $direction 1 M1 = -5.33e00 knm$ $direction 2 M2 = -3.85e02 knm$ Torque moment $MT = 1.86e-02 knm$ Torque moment $RESISTANCE OF CROSS-SECTIONS (EN 1993-1-1 § 6.2):$ Class of section for the internal force considered: $C1 = Classe 3$ Point with greatest internal forces $y = -0.11 m$ $z = -0.28 m$ Axial+bending stress $\sigma_{pf} = -2.17e05 MPa$ Maximum tensile stress $\tau_{max} = 19732.88 MPa$ Ideal stress $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \sigma_{VM} = 2.17e05 MPa$ $\sigma_{VM}/f_d F_R = 0.64 Verificato$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: $C1 = Classe 3$ Axial force $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \sigma_{VM} = 2.17e05 MPa$ $\sigma_{VM}/f_d F_R = 0.64 Verificato$	-		•		
Axial force Shear forces direction 1 V1 = 3.69e00 kN direction 2 V2 = 1.09e02 kN direction 1 M1 = -5.33e00 kNm direction 1 M1 = -5.33e00 kNm direction 2 M2 = -3.85e02 kNm direction 2 M2 = -3.85e02 kNm MT = 1.86e-02 kN MT = 1.86e-02 k			111 1.00		
Shear forces direction 1 V1 = 3.69e00 kN direction 2 V2 = 1.09e02 kN Bending moments direction 1 M1 = -5.33e00 kNm direction 1 M2 = -3.85e02 kNm MT = 1.86e-02 kNm MT = 1.86e	INTERNAL FORCES:				
Shear forces direction 1 V1 = 3.69e00 kN direction 2 V2 = 1.09e02 kN Bending moments direction 1 M1 = -5.33e00 kNm direction 1 M2 = -3.85e02 kNm MT = 1.86e-02 kNm MT = 1.86e	Axial force		AF = -5.04e02	kN	
Bending moments direction 2 V2 = 1.09e02 kN direction 1 M1 = -5.33e00 kNm direction 2 M2 = -3.85e02 kNm MT = 1.86e-02 k		direction 1			
Bending moments direction 1 $M1 = -5.33e00$ kNm $M2 = -3.85e02$ kNm $M2 = -3.85e02$ kNm $M3 = 1.86e-02$ kNm $M4 = 1.86e-02$ kNm $M5 = 1.86e-02$ kNm $M6 = 1.86e-02$ kNm $M7 = 1.86e-02$ kNm $M8 = 1.86e-02$ kNm $M9 = 1.86e-02$ kN $M9 = 1.86e$					
Torque moment $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Bending moments	direction 1	M1 = -5.33e00	kNm	
RESISTANCE OF CROSS-SECTIONS (EN 1993-1-1 § 6.2): Class of section for the internal force considered: Cl = Classe 3 Point with greatest internal forces $ y = -0.11 \\ z = -0.28 \\ m $ Axial+bending stress $ \sigma_{pf} = -2.17e05 \\ \tau_{max} = 19732.88 $ MPa Ideal stress $ \sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} $ $ \sigma_{VM} = 2.17e05 \\ \sigma_{VM} / f_d $ F _R = 0.64 Werificato BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: Cl = Classe 3 Axial force N _{ED} = -5.04e02 kN Bending moment N _{ED} = -5.03e00 kNm				kNm	
Class of section for the internal force considered: $C1 = Classe \ 3$ Point with greatest internal forces $y = -0.11 m \\ z = -0.28 m$ Axial+bending stress $\sigma_{pf} = -2.17e05 MPa \\ Maximum tensile stress \tau_{max} = 19732.88 MPa Ideal stress \sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \sigma_{VM} = 2.17e05 MPa \\ \sigma_{VM}/f_d F_R = 0.64 Verificato BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: C1 = Classe \ 3 Axial force N_{ED} = -5.04e02 kN \\ M_{Z,ED} = -5.33e00 kNm$	Torque moment		MT = 1.86e-02	kNm	
Class of section for the internal force considered: $C1 = Classe \ 3$ Point with greatest internal forces $y = -0.11 m \\ z = -0.28 m$ Axial+bending stress $\sigma_{pf} = -2.17e05 MPa \\ Maximum tensile stress \tau_{max} = 19732.88 MPa Ideal stress \sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \sigma_{VM} = 2.17e05 MPa \\ \sigma_{VM}/f_d F_R = 0.64 Verificato BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: C1 = Classe \ 3 Axial force N_{ED} = -5.04e02 kN \\ M_{Z,ED} = -5.33e00 kNm$	RESISTANCE OF CROSS-SECTIO	NS (EN 1993-1-1 § 6	.2):		
Point with greatest internal forces $y = -0.11 \text{m} \\ z = -0.28 \text{m}$ $\text{Axial+bending stress} \qquad \sigma_{pf} = -2.17e05 \text{MPa} \\ \text{Maximum tensile stress} \qquad \sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \sigma_{VM} = 2.17e05 \text{MPa} \\ \sigma_{VM}/f_d \qquad F_R = 0.64 \qquad \text{Verificato}$ $\text{BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3):}$ $\text{Class of section for the internal force considered:} \\ \text{Cl} = \text{Classe 3}$ $\text{Axial force} \qquad N_{ED} = -5.04e02 \text{kN} \\ \text{Bending moment} \qquad M_{Z_z,ED} = -5.33e00 \text{kNm}$		•			
Point with greatest internal forces $y = -0.11 \\ z = -0.28 \\ m$ Axial+bending stress $\sigma_{pf} = -2.17e05 \\ \tau_{max} = 19732.88 \\ MPa$ Ideal stress $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \\ \sigma_{VM}/f_d \qquad F_R = 0.64 \\ Verificato$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: $C1 = Classe 3$ Axial force $N_{ED} = -5.04e02 \\ M_{Z,ED} = -5.33e00 \\ kNm$	Class of section for the	internal force cons		3	
Axial+bending stress $\sigma_{pf} = -2.17e05 \qquad \text{MPa}$ Maximum tensile stress $\tau_{max} = 19732.88 \qquad \text{MPa}$ Ideal stress $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \qquad \sigma_{VM} = 2.17e05 \qquad \text{MPa}$ $\sigma_{VM}/f_d \qquad F_R = 0.64 \qquad \text{Verificato}$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): $Class \ of \ section \ for \ the \ internal \ force \ considered: Cl = Classe \ 3 Axial force N_{ED} = -5.04e02 \qquad kN Bending moment N_{Z,ED} = -5.33e00 \qquad kNm$			CI - Classe	J	
Axial+bending stress $\sigma_{pf} = -2.17e05 \qquad \text{MPa}$ Maximum tensile stress $\tau_{max} = 19732.88 \qquad \text{MPa}$ Ideal stress $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)} \qquad \sigma_{VM} = 2.17e05 \qquad \text{MPa}$ $\sigma_{VM}/f_d \qquad F_R = 0.64 \qquad \text{Verificato}$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): $Class \ of \ section \ for \ the \ internal \ force \ considered: Cl = Classe \ 3 Axial force N_{ED} = -5.04e02 \qquad kN Bending moment N_{Z,ED} = -5.33e00 \qquad kNm$	Point with greatest intern	al forces	v = -0.11	m	
Axial+bending stress $\sigma_{pf} = -2.17e05 \qquad \text{MPa}$ Maximum tensile stress $\tau_{\text{max}} = 19732.88 \qquad \text{MPa}$ Ideal stress $\sigma_{\text{VM}} = \sqrt{(\sigma_{pf}^2 + 3\tau_{\text{max}}^2)} \qquad \sigma_{\text{VM}} = 2.17e05 \qquad \text{MPa}$ $\sigma_{\text{VM}}/f_d \qquad F_R = 0.64 \qquad \text{Verificato}$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): $\text{Class of section for the internal force considered:} \qquad \text{Cl} = \qquad \text{Classe 3}$ Axial force $N_{ED} = -5.04e02 \qquad \text{kN}$ Bending moment $M_{z,ED} = -5.33e00 \qquad \text{kNm}$	Totale with greatest intern		=		
Maximum tensile stress $\tau_{\text{max}} = 19732.88 \qquad \text{MPa}$ Ideal stress $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)} \qquad \sigma_{\text{VM}} = 2.17e05 \qquad \text{MPa}$ $\sigma_{\text{VM}}/f_d \qquad F_R = 0.64 \qquad \text{Verificato}$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): $\text{Class of section for the internal force considered:} \qquad \text{Cl} = \qquad \text{Classe 3}$ Axial force $N_{\text{ED}} = -5.04e02 \qquad \text{kN}$ Bending moment $M_{z,\text{ED}} = -5.33e00 \qquad \text{kNm}$					
Maximum tensile stress $\tau_{\text{max}} = 19732.88 \qquad \text{MPa}$ Ideal stress $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)} \qquad \sigma_{\text{VM}} = 2.17e05 \qquad \text{MPa}$ $\sigma_{\text{VM}}/f_d \qquad F_R = 0.64 \qquad \text{Verificato}$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): $\text{Class of section for the internal force considered:} \qquad \text{Cl} = \qquad \text{Classe 3}$ Axial force $N_{\text{ED}} = -5.04e02 \qquad \text{kN}$ Bending moment $M_{z,\text{ED}} = -5.33e00 \qquad \text{kNm}$	Axial+bending stress		$\sigma_{\rm pf} = -2.17e05$	MPa	
Ideal stress	-		*		
$\sigma_{\text{VM}}/f_{\text{d}} \qquad F_{\text{R}} = \text{ 0.64} \qquad \text{Verificato}$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: $\text{Cl} = \text{ Classe 3}$ Axial force $N_{\text{ED}} = -5.04e02 kN$ Bending moment $M_{\text{Z,ED}} = -5.33e00 kNm$			13/32.00		
$\sigma_{\text{VM}}/f_{\text{d}} \qquad F_{\text{R}} = \text{ 0.64} \qquad \text{Verificato}$ BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3): Class of section for the internal force considered: $\text{Cl} = \text{ Classe 3}$ Axial force $N_{\text{ED}} = -5.04e02 kN$ Bending moment $M_{\text{Z,ED}} = -5.33e00 kNm$	Ideal stress	$\sigma_{VM} = \sqrt{(\sigma_{nf}^2 + 3\tau_{max}^2)}$	$\sigma_{VM} = 2.17e05$	MPa	
Class of section for the internal force considered: $ Cl = Classe \ 3 $ Axial force $ N_{ED} = -5.04e02 kN $ Bending moment $ M_{z,ED} = -5.33e00 kNm $					ato
Class of section for the internal force considered: $ Cl = Classe \ 3 $ Axial force $ N_{ED} = -5.04e02 kN $ Bending moment $ M_{z,ED} = -5.33e00 kNm $					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BUCKLING RESISTANCE FOR ME	MBERS (EN 1993-1-1	§ 6.3):		
Axial force $N_{\text{ED}} = -5.04 \text{e}02 \qquad kN$ Bending moment $M_{\text{Z,ED}} = -5.33 \text{e}00 k\text{Nm}$	Class of section for the	internal force cons		3	
Bending moment $M_{z,ED} = -5.33e00 \text{ kNm}$			CI - CIASSE	J	
Bending moment $M_{z,ED} = -5.33e00 \text{ kNm}$	Axial force		$N_{ED} = -5.04e02$	kN	
-					
	-				

Table of crit	tical loads				
·	Critical	Buckling	Non-dimensional		
Axis	force	length	slenderness	fact	tor
	Pcr [kN]	ℓ_0 [m]	λ^{\star}	χ	
У	86946.28	4.00	0.23	0.9	
Z	13824.35	2.00	0.59	0.8	34
θ	21178.48	2.00	0.47	0.9	90
min	13824.35		0.59	0.8	34
	Mcr [Nmm]	ℓ_0 [mm]	$\lambda^{\star}{}_{\scriptscriptstyle{\mathrm{LT}}}$	χ_{L}	T
Bending/tors:	ion 1050.64	2.00	0.91	0.7	71
Design buckli	ing resistance	Min	N _b , _{Rd} =		
		axis y	$N_{b,y,Rd} =$		
		axis z	$N_{b,z,Rd} =$	3.82e03	KN
Design buckli	ing resis. moment	axis y	$M_b, y, Rd =$	5.84e02	kNm
		axis z	M_z , Rd =	8.59e01	kNm
Interaction i	factors		k _{yy} =	0.80	
			k _{yz} =	0.51	
			k _{zy} =	0.99	
			k _{zz} =	0.51	
Buckling resi	istance for unifor	m member in	axial compressi	on	
N _{Ed} /N _{b,Rd} ≤	1		$F_{I-N} = 0$.13	(Verificato)
Buckling resi	istance for unifor	m member in	bending and axi	al compre	ession
(NEd/Nb,y,Rd)	$+k_{yy}(M_{y,Ed}/M_{b,y,Rd}) + $	ς _{yz} (M _{z,Ed} /M _{z,Rd})	$) \leq 1$ $F_{R-PF,y} = 0$.80	(Verificato)
	$+k_{zy}(M_{y,Ed}/M_{b,y,Rd})+$				(Verificato)

PROP. 2 - BEAM n. 235 - SECTION IN X = 0.00

`p.:	TR	AVI	PRIN	CIPALI	Trave:	235	Prop.:	2	Sez.in:	0.
				M1 = 1.	33		M2 =	= 24	17.11	
LC	18		N	= -237	.89		V1	= -	0.53	
			V	2 = -29	.37		MT =	4.3	88e-04	
				Se	ez. a Do	oppio	Т			
I) =	0.5	500	B1 = 0	.2100	r1 =	0.0172	Т2	= 0.0172	
				T3 = 0	0.0111	B2 =	0.2100			
			Aı	rea		= 1.	34e-02			
			I	11		= 6.	71e-04			
			Ι	22		= 2.	67e-05			

STATIC PARAMETERS OF SECITION					
Altezza totale		D =	0.55	m	
Base inferiore		B1 =	0.21	m	
Spessore flangia inferiore		T1 =	0.02	m	
Spessore flangia superiore		T2 =	0.02	m	
Spessore anima		T3 =	0.01	m	
Base superiore		B2 =	0.21	m	
Location of elastic center of	gravity	X _{1G} ,el	= 0.11	m	
		X2G,el	= 0.28	m	
Location of plastic center of	gravity		= 0.11	m	
Distance senter of gravity	ahaan aantan	X2G,pl X1CT-X1G	= 0.28	m m	
Distance center of gravity -	Shear Center		= 0.00	m	
Section area		A =	1.34e-02	m²	
Moment of inertia	axis 1	I ₁₁ =	6.71e-04	m ⁴	
	axis 2	I ₂₂ =	2.67e-05	m^4	
	axis 3	J =	9.48e-07	m^4	
Polar moment respect to shear	center	Ip =	6.66e-04	m^4	
Warping constant			1.88e-06	m^6	
Radius of gyration	axis 1	i ₁₁ =	0.22	m	
	axis 2	i ₂₂ =	0.04	m	
Elastic section modulus	Тор	$W_{1 \text{ sup,el}} =$	2.44e-03	m³	
	Lower	$W_{1 \text{ inf,el}} =$		m³	
Elastic section modulus	Right	$W_{2 dx,el} =$		m³	
District and the second size	Left	$W_{2 \text{ sx,el}} =$		m³	
Plastic section modulus	axis 1 axis 2	-7-	2.66e-03	m³ m³	
Shear area	axis 2 axis 1	$W_{2,p1} = A_{V1,p1} =$	3.95e-04 7.22e-03	m²	
Shear area	axis 2	Av1,p1 =	5.91e-03	m ²	
BEAM'S CHARACTERISTIC:					
Length			2.00	m	
•	avis 1	R ₁ =		111	
Multiplier for inflection	axis 1	•	1.00	111	
•	axis 2	$\beta_2 =$	1.00 7.00		
•		$\beta_2 =$	1.00	Tit.	
Multiplier for inflection Attributes for the calculation	axis 2 axis 3 n of instability	$\beta_2 = \beta_3 =$	1.00 7.00 3.00		
Multiplier for inflection Attributes for the calculation Diagram	axis 2 axis 3 n of instability	β ₂ = β ₃ = k _c	1.00 7.00 3.00		C _m
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9	axis 2 axis 3 n of instability V -0.86	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$	1.00 7.00 3.00 m _{LT} 0.4	5	0.40
Multiplier for inflection Attributes for the calculation Diagram	axis 2 axis 3 n of instability	β ₂ = β ₃ = k _c	1.00 7.00 3.00	5	
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9	axis 2 axis 3 n of instability V -0.86	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$	1.00 7.00 3.00 m _{LT} 0.4	5	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2	axis 2 axis 3 n of instability V -0.86	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$	1.00 7.00 3.00 m _{LT} 0.4	5	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing	axis 2 axis 3 n of instability V -0.86	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.91 \$355 Laminata	1.00 7.00 3.00 m _{LT} 0.4 0.8	5 9	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity	axis 2 axis 3 n of instability \textsty -0.86 0.72	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 8355 $Laminata$ $E = \frac{k_c}{0.98}$	1.00 7.00 3.00 m _{LT} 0.4 0.8	5 9 GPa	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength	axis 2 axis 3 n of instability \text{\psi} -0.86 0.72 (t < 40mm)	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 8355 $Laminata$ $E = f_y = \frac{k_c}{0.98}$	1.00 7.00 3.00 3.00 m _{LT} 0.4 0.8	5 9 GPa MPa	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength	axis 2 axis 3 n of instability	$\beta_2 = \beta_3 = k_c$ 0.98 0.91 8355 $Laminata$ $E = f_y = f_u = f_u = k_s$	1.00 7.00 3.00 m _{LT} 0.4 0.8 206.00 355.00 510.00	5 9 GPa MPa MPa	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength	axis 2 axis 3 n of instability -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm)	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 $S355$ $Laminata$ $E = f_y = f$	1.00 7.00 3.00 m _{U.T} 0.4 0.8 206.00 355.00 510.00 335.00	5 9 GPa MPa MPa MPa MPa	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Ultimate strength Ultimate strength Ultimate strength	axis 2 axis 3 n of instability -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm)	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 $S355$ $Laminata$ $E = f_y = f_u = f_y = f_u = f_y = f_u = f$	1.00 7.00 3.00 m _{U.T} 0.4 0.8 206.00 355.00 510.00 335.00 470.00	5 9 GPa MPa MPa	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resi	axis 2 axis 3 n of instability -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) istance	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 $S355$ $Laminata$ $E = f_y = f_u = f_u = f_y = f_u = f$	1.00 7.00 3.00 3.00 m _{LT} 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05	5 9 GPa MPa MPa MPa MPa	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Vield strength Ultimate strength Partial safety factor for resipartial safety factor for instead	axis 2 axis 3 n of instability -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) istance	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 $S355$ $Laminata$ $E = f_y = f_u = f_y = f_u = f_y = f_u = f$	1.00 7.00 3.00 m _{U.T} 0.4 0.8 206.00 355.00 510.00 335.00 470.00	5 9 GPa MPa MPa MPa MPa	0.40
Multiplier for inflection Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resi	axis 2 axis 3 n of instability -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) istance	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 $S355$ $Laminata$ $E = f_y = f_u = f_u = f_y = f_u = f$	1.00 7.00 3.00 3.00 m _{LT} 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05	5 9 GPa MPa MPa MPa MPa	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Partial safety factor for resi	axis 2 axis 3 n of instability	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 8355 $Laminata$ $E = f_y = f_u = f$	1.00 7.00 3.00 m _{LT} 0.4 0.8 206.00 355.00 510.00 1.05 1.05	5 9 GPa MPa MPa MPa MPa	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Vield strength Partial safety factor for resipartial safety factor for inst	axis 2 axis 3 n of instability v -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) istance tability direction 1	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 S355 Laminata E = fy = fu = fy = fu = $\gamma_{M0} = \gamma_{M1} = \frac{\lambda_{M1}}{\lambda_{M2}} = \frac{\lambda_{M2}}{\lambda_{M1}} = \frac{\lambda_{M1}}{\lambda_{M2}} = \frac{\lambda_{M1}}{\lambda_{M2}} = \frac{\lambda_{M2}}{\lambda_{M1}} = \frac{\lambda_{M1}}{\lambda_{M2}} = \frac{\lambda_{M2}}{\lambda_{M1}} = \frac{\lambda_{M2}}{\lambda_{M1}} = \frac{\lambda_{M2}}{\lambda_{M1}} = \frac{\lambda_{M1}}{\lambda_{M2}} = \frac{\lambda_{M2}}{\lambda_{M1}} = \frac{\lambda_{M2}}{\lambda_{M2}} = \lambda_$	1.00 7.00 3.00 3.00 3.00 4.0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05	599 GPa MPa MPa MPa MPa MPa MPa	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Vield strength Ultimate strength Partial safety factor for resipartial safety factor for instituted in the company of the company of the company of the company of the calculation of	axis 2 axis 3 n of instability \tilde{\psi} -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) istance tability direction 1 direction 2	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 S355 Laminata E = fy = fu = fy = fu = ym0 = ym1 = AF = -2. V1 = -5. V2 = -2.	1.00 7.00 3.00 MLT 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01	5 9 GPa MPa MPa MPa MPa MPa MPa MPa	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Partial safety factor for resi	axis 2 axis 3 n of instability \tilde{\psi} -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) istance tability direction 1 direction 2 direction 1	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 $S355$ Laminata $E = f_y = f_u = f_y = f_u = f_y = f_u = \gamma_{M0} = \gamma_{M1} = \frac{\lambda F}{0.98} = \frac{\lambda F}{0.$	1.00 7.00 3.00 MILT 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01 33e00	5 99 GPa MPa MPa MPa MPa MPa kN kN kN	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resipartial safety factor for institutions. INTERNAL FORCES: Axial force Shear forces	axis 2 axis 3 n of instability \tilde{\psi} -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) istance tability direction 1 direction 2	$\beta_2 = \beta_3 = \frac{k_c}{0.98}$ 0.98 0.91 S355 Laminata E = fy = fu = fy = fu = ym0 = ym1 = AF = -2. V1 = -5. V2 = -2.	1.00 7.00 3.00 muth 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01 33e00 47e02	5 9 GPa MPa MPa MPa MPa MPa MPa MPa	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resipartial safety factor for instituted in the company of the calculation of the	axis 2 axis 3 n of instability \(\psi \) -0.86 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) (t > 40mm) (t > direction 1 direction 2 direction 1 direction 2	$\begin{array}{c} \beta_2 = \\ \beta_3 = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.00 7.00 3.00 muth 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01 33e00 47e02	SPa MPa MPa MPa MPa MPa MPa MPa kN kN kN	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Partial safety factor for res: Partial safety factor for inst INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS	axis 2 axis 3 n of instability \(\psi \) \(-0.86 \) 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) (t > 40mm) istance cability direction 1 direction 2 direction 1 direction 2	$\begin{array}{c} \beta_2 = \\ \beta_3 = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.00 7.00 3.00 muth 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01 33e00 47e02	SPa MPa MPa MPa MPa MPa MPa MPa kN kN kN	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Partial safety factor for resipartial safety factor for institute of the company of the	axis 2 axis 3 n of instability \(\psi \) \(-0.86 \) 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) (t > 40mm) istance cability direction 1 direction 2 direction 1 direction 2	$\begin{array}{c} \beta_2 = \\ \beta_3 = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.00 7.00 3.00 muth 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01 33e00 47e02	SPa MPa MPa MPa MPa MPa MPa MPa kN kN kN	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Partial safety factor for resipartial safety factor for institute in the strength Partial safety factor for institute in the strength There is a strength in the	axis 2 axis 3 n of instability \(\psi \) \(-0.86 \) 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) (t > 40mm) istance tability direction 1 direction 2 direction 1 direction 2 direction 1 direction 2	$\begin{array}{c} \beta_2 = \\ \beta_3 = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.00 7.00 3.00 MLT 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01 33e00 47e02 38e-04	599 GPa MPa MPa MPa MPa MPa MPa MPa kN kN kN kN kN kNm kNm	0.40
Attributes for the calculation Diagram Plan 1 Tipo 9 Plan 2 Tipo 2 MATERIAL'S CHARACTERISTIC: Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Partial safety factor for res: Partial safety factor for inst INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS	axis 2 axis 3 n of instability \(\psi \) \(-0.86 \) 0.72 (t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm) (t > 40mm) istance tability direction 1 direction 2 direction 1 direction 2 direction 1 direction 2	$\begin{array}{c} \beta_2 = \\ \beta_3 = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.00 7.00 3.00 mut 0.4 0.8 206.00 355.00 510.00 335.00 470.00 1.05 1.05 38e02 26e-01 94e01 33e00 47e02 38e-04 Classe 3	SPa MPa MPa MPa MPa MPa MPa MPa kN kN kN	0.40

Axial+bending stress $\sigma_{\text{pf}} = -1.24\text{e05} \qquad \text{MPa}$ Maximum tensile stress $\tau_{\text{max}} = 5252.60 \qquad \text{MPa}$

Ideal stress $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}} = 1.24\text{e}05$ MPa

 $\sigma_{\text{VM}}/f_{\text{d}}$ $F_{\text{R}} = 0.37$ Verificato

BUCKLING RESISTANCE FOR MEMBERS (EN 1993-1-1 § 6.3):

Class of section for the internal force considered:

Cl = Classe 3

Axial force $N_{ED} = -2.38e02 \hspace{0.2cm} kN$ Bending moment $M_{z,ED} = -1.55e00 \hspace{0.2cm} kNm$

 $M_{y,ED} = 2.47e02 \text{ kNm}$

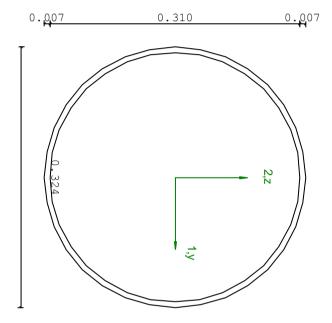
Table of critical loads

Axis	Critical force	Buckling length		Reduction factor	
	Pcr [kN]	ℓ_0 [m]	λ^*	χ	
У	7097.66	14.00	0.82	0.78	
Z	13824.35	2.00	0.59	0.84	
θ	3725.27	6.00	1.13	0.52	
min	3725.27		1.13	0.52	
	Mcr [Nmm]	ℓ₀ [mm]	$\lambda^{\star}{}_{\scriptscriptstyle{\mathrm{LT}}}$	$\chi_{ t LT}$	
Bending/torsio	n 404.50	6.00	1.46	0.36	
Design bucklin	g resistance	Min	$N_{b,Rd} =$	2.34e03 kN	
		axis y	$N_{b,y,Rd} =$	3.56e03 kN	
		axis z	$N_{b,z,Rd} =$	3.82e03 kN	
Design bucklin	g resis. moment	axis y	$M_{b,y,Rd} =$	2.95e02 kNm	
-		axis z	$M_{z,Rd} =$	8.59e01 kNm	
Interaction fa	ctors		k _{vv} =	0.92	
			k _{vz} =		
			k _{zv} =		
			k _{zz} =	0.41	

Buckling resistance for uniform member in axial compression

 $N_{Ed}/N_{b,Rd} \le 1$ $F_{I-N} = 0.10$ (Verificato)

Buckling resistance for uniform member in bending and axial compression


 $(N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yz} (M_{z,Ed}/M_{z,Rd}) \le 1 \qquad F_{R-PF,y} = 0.91 \qquad (Verificato) \\ (N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1 \qquad F_{R-PF,z} = 0.84 \qquad (Verificato)$

5.1.5. Verifica prop. 3

PROP. 3 - BEAM n. 97 - SECTION IN X = 6.18

Grp.	: Montanti	Trave: 9	7 Prop.:	3 Sez.in: 6.18		
	M1 =	-10.70		M2 = 83.39		
LC 28	N = -	506.51		V1 = -1.17		
	V2 =	12.28		MT = -5.26		
	Sezione Circolare cava					
	D	= 0.3239	T1 = 0.00	71		
	Area		= 7.07e-	03		
I11			= 8.87e - 05			
	I22 = 8.87e-05					

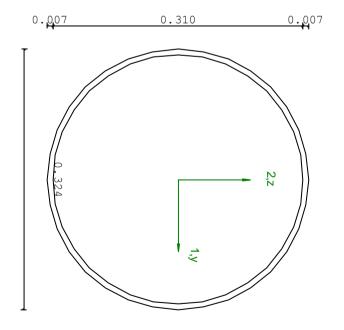
STATIC	PARAMETERS	OF	SECITION
--------	------------	----	----------

Diametro Spessore		D = T1 =	0.32 7.10e-03	m m
Location of elastic center of g Location of plastic center of g Distance center of gravity - s	ravity	X1G,e1 X2G,e1 X1G,p1 X2G,p1 X1CT-X1G X2CT-X2G	= 0.16	m m m m m
Section area Moment of inertia Polar moment respect to shear c Warping constant Radius of gyration	axis 1 axis 2 axis 3 enter axis 1 axis 2	I ₁₁ = I ₂₂ = J = I _p = I _o = i ₁₁ =	7.07e-03 8.87e-05 8.87e-05 1.77e-04 1.77e-04 0.00 0.11 0.11	m ² m ⁴ m ⁴ m ⁴ m ⁶ m
Elastic section modulus Elastic section modulus Plastic section modulus	Top Lower Right Left axis 1 axis 2	W ₁ inf,el = W ₂ dx,el = W ₂ sx,el = W _{1,pl} =	5.48e-04 5.48e-04 5.48e-04 5.48e-04 7.13e-04 7.13e-04	m ³ m ³ m ³ m ³ m ³ m ³
Shear area	axis 1 axis 2	$A_{V1,p1} =$	4.50e-03 4.50e-03	m² m²

BEAM'S CHARACTERISTIC:					
Length			6.18	m	
Multiplier for inflectio	n axis 1	$\beta_1 =$	2.00	111	
	axis 2	$\beta_2 =$	1.00		
	axis 3	$\beta_3 =$	1.00		
		1.4			
Attributes for the calcu					
Diagram	•	k _c	,	m _{LT}	C _m
Plan 1 Tipo 9 Plan 2 Tipo 2		0.95 0.75		0.66 0.59	0.67 0.59
rian 2 11po 2	-0.02	0.75	(J. J9	0.39
MATERIAL'S CHARACTERISTI	C:				
Obs. 1 boos		9355			
Steel type Processing		S355 Laminata	9		
Modulus of elasticity		E =	206.00	GPa	
Yield strength	(t < 40mm)		355.00	MPa	
Ultimate strength	(t < 40mm)		510.00	MPa	
Yield strength	(t > 40mm)	fy =	335.00	MPa	
Ultimate strength	(t > 40mm)	fu =	470.00	MPa	
Partial safety factor fo	r resistance	γ _{м0} =	1.05		
Partial safety factor fo	r instability	$\gamma_{\text{Ml}} =$	1.05		
INTERNAL FORCES:					
Axial force		AF = -5		kN	
Shear forces	direction 1			kN	
	direction 2			kN	
Bending moments	direction 1			kNm	
Torque moment	direction 2	M2 = 8 MT = -5		kNm kNm	
			2.20000	J. L. VIII	
RESISTANCE OF CROSS-SECT	IONS (EN 1993-1-1 § 6	.2):			
Class of section for th	e internal force cons	idered:			
		Cl =	Classe	2	
Axis with greater inerti		y-y =	2-2		
Axis with less inert	cia	z-z =	1-1		
Axial resistance		N _{Rd} =	2389.09	kN	
Axiai lesistance		NRG —	2307.07	VIA	
Design plastic shear res	istance axis y	$V_{pl,y,Rd} =$	878.12	kN	
Reduction for torsic	on	coeff =	0.98		
		$V_{\text{pl,y,T,Rd}}$	=856.98	kN	
			0.00 4.0		
Design plastic shear res		$V_{pl,z,Rd} =$		kN	
Reduction for torsic	on	coeff =	0.98 =856.98	kN	
		v p1, 2, 1, kd	030.30	KIV	
Design resistance for be	nding axis y	$M_{y,Rd} =$	240.96	kNm	
Reduction for shear		coeff =	1.00		
		$M_{y,V,Rd} =$	240.96	kNm	
			0.40	1	
Design resistance for be	nding axis z	$M_{z,Rd} =$ $coeff =$		kNm	
Reduction for shear		$M_{z,V,Rd} =$		kNm	
		112, V, Rd —	240.70	KIVIII	
Design torsional resista	nce	$T_{Rd} =$	218.49	kNm	
Verification of plastic	resistance for avial :	and hendir	na moment		
) + $(M_z, Ed/M_z, Rd) \leq 1$		0.56	Verificato	
) T (Mz,Ed/Mz,Rd) \(\sime\) \(\pi\)	r R-PF —	0.56	verificato	
Verification of plastic	resistance for shear	F =	0 02	Verificato	
Verification of plastic $(V_y,_{Ed}/V_y,_{Rd}) + (V_z,_{Ed}/V_z,_{Rd})$	resistance for shear d) ≤ 1	$F_{R-V} =$	0.02	Verificato	
Verification of plastic $(V_{\text{y},\text{Ed}}/V_{\text{y},\text{Rd}}) + (V_{\text{z},\text{Ed}}/V_{\text{z},\text{Rd}})$	resistance for shear d) ≤ 1		0.02	Verificato Verificato	
$\begin{array}{ll} \text{Verification of plastic} \\ & (V_{y,\text{Ed}}/V_{y,\text{Rd}}) + (V_{z,\text{Ed}}/V_{z,\text{Re}}) \\ \text{Verification of elastic} \\ & (T_{\text{Ed}}/T_{\text{Rd}}) \leq 1 \end{array}$	resistance for shear $_{d}) \leq 1$ resistance for torsion	$F_{R-T} =$			
$\begin{array}{ll} \text{Verification of plastic} \\ & (V_{y,\text{Ed}}/V_{y,\text{Rd}}) + (V_{z,\text{Ed}}/V_{z,\text{Re}}) \\ \text{Verification of elastic} \\ & (T_{\text{Ed}}/T_{\text{Rd}}) \leq 1 \end{array}$	resistance for shear $_{d}) \leq 1$ resistance for torsion	$F_{R-T} =$			
$\begin{split} \text{Verification of plastic} \\ & (V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}$	resistance for shear $_{d}$) \leq 1 resistance for torsion resistance for tensile	$F_{R-T} = $ $F_{R-T} = $ $F_{R-\tau} = $	0.02	Verificato	
$\label{eq:verification} \begin{array}{l} \text{Verification of plastic} \\ (V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}/V_{z,Rd}) \\ \text{Verification of elastic} \\ (T_{Ed}/T_{Rd}) \leq 1 \\ \text{Verification of elastic} \\ \tau_{Ed} \cdot \sqrt{(3)} \cdot \gamma_{M0}/f_y \leq 1 \\ \\ \hline \text{BUCKLING RESISTANCE FOR} \end{array}$	resistance for shear $_{d}$) \leq 1 resistance for torsion resistance for tensile MEMBERS (EN 1993-1-1 $_{\odot}$	$F_{R-T} = $ $e \text{ stress}$ $F_{R-\tau} = $ 8 6.3):	0.02	Verificato	
$\begin{split} \text{Verification of plastic} \\ & (V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}$	resistance for shear $_{d}$) \leq 1 resistance for torsion resistance for tensile MEMBERS (EN 1993-1-1 $_{\odot}$	$F_{R-T} = 0$ $F_{R-T} = 0$ $F_{R-\tau} = 0$	0.02	Verificato Verificato	
Verification of plastic $(V_y,_{Ed}/V_y,_{Rd}) + (V_z,_{Ed}/V_z,_{Rd})$ Verification of elastic $(T_{Ed}/T_{Rd}) \leq 1$ Verification of elastic $\tau_{Ed} \cdot \sqrt{(3)} \cdot \gamma_{M0}/f_y \leq 1$ BUCKLING RESISTANCE FOR	resistance for shear $_{d}$) \leq 1 resistance for torsion resistance for tensile MEMBERS (EN 1993-1-1 $_{\odot}$	$F_{R-T} = 0$ $F_{R-T} = 0$ $F_{R-\tau} = 0$	0.02 0.04	Verificato Verificato	
$\label{eq:verification} \begin{array}{l} \text{Verification of plastic} \\ (V_y,_{Ed}/V_y,_{Rd}) + (V_z,_{Ed}/V_z,_{Rd}) \\ \text{Verification of elastic} \\ (T_{Ed}/T_{Rd}) \leq 1 \\ \text{Verification of elastic} \\ \tau_{Ed} \cdot \sqrt{(3)} \cdot \gamma_{M0}/f_y \leq 1 \\ \\ \hline \text{BUCKLING RESISTANCE FOR} \end{array}$	resistance for shear $_{d}$) \leq 1 resistance for torsion resistance for tensile MEMBERS (EN 1993-1-1 $_{\odot}$	$F_{R-T} = 0$ $F_{R-T} = 0$ $F_{R-\tau} = 0$	0.02 0.04	Verificato Verificato	

Table of crit	ical loads				
	Critical	Buckling	Non-dimensional		
Axis	force	length	slenderness	fact	cor
	Pcr [kN]	ℓ_0 [m]	λ^*	χ	
У	4808.56	6.18	0.72	0.8	34
Z	1202.14	12.37	1.44	0.4	10
Design buckli	ng resistance	Min	$N_{b,Rd} =$	9.48e02	kN
		axis y	$N_{b,y,Rd} =$	2.00e03	kN
		axis z	$N_{b,z,Rd} =$	9.48e02	kN
Design buckli	ng resis. moment	axis y	$M_{b,y,Rd} =$	2.50e02	kNm
		axis z	$M_{z,Rd} =$	2.41e02	kNm
Interaction f	actors		k _{yy} =	0.67	
			k _{yz} =	0.57	
			k _{zy} =	0.40	
			k _{zz} =	0.95	

Buckling resistance for uniform member in axial compression


 $N_{Ed}/N_{b,Rd} \le 1$ $F_{I-N} = 0.54$ (Verificato)

Buckling resistance for uniform member in bending and axial compression

 $(N_{Ed}/N_{b,\,y,\,Rd}) + k_{yy} (M_{y,\,Ed}/M_{b,\,y,\,Rd}) + k_{yz} (M_{z,\,Ed}/M_{z,\,Rd}) \leq 1 \qquad F_{R-PF,\,y} = 0.43 \qquad \text{(Verificato)} \\ (N_{Ed}/N_{b,\,z,\,Rd}) + k_{zy} (M_{y,\,Ed}/M_{b,\,y,\,Rd}) + k_{zz} (M_{z,\,Ed}/M_{z,\,Rd}) \leq 1 \qquad F_{R-PF,\,z} = 0.79 \qquad \text{(Verificato)}$

PROP. 3 - BEAM n. 97 - SECTION IN X = 0.00

Grp.	: Montanti	Trave:	97	Prop.:	3	Sez.in: 0.00
	M1 =	-0.04			M2	= -0.91
LC 27	N = -7	738.16			V1	= -2.51
	V2 =	10.57			МТ	= -3.59
	Se	zione Ci	irco	lare ca	va	
	D =	0.3239	Т1	= 0.00	71	
	Area		=	7.07e-	03	
	I11		=	8.87e-	05	
	I22		=	8.87e-	05	

STATIC PARAMETERS OF SECITION

Diametro D = 0.32 m Spessore T1 = 7.10e-03 m

Location of elastic center of gr	ravitv	X _{1G,e1}	= 0.16	m	
Location of plastic center of qu		X2G,e1 X1G,p1	= 0.16 = 0.16	m m	
Distance center of gravity - sh	-	X _{2G} , _{pl} X _{1CT} -X _{1G}	= 0.16	m m	
		X _{2CT} -X _{2G}		m	
Section area	1	A =	7.07e-03		
Moment of inertia	axis 1 axis 2	$I_{11} = I_{22} =$	8.87e-05 8.87e-05	m^4	
Polar moment respect to shear co	axis 3 enter	J = I _p =	1.77e-04 1.77e-04	m ⁴ m ⁴	
Warping constant Radius of gyration	axis 1	$I_{\omega} = i_{11} =$	0.00	m ⁶ m	
nadiab of gyracion	axis 2	i ₂₂ =	0.11	m	
Elastic section modulus	Top Lower	-	5.48e-04 5.48e-04		
Elastic section modulus	Right	$W_{2 \text{ dx,el}} =$	5.48e-04	m³	
Plastic section modulus	Left axis 1	$W_{1,pl} =$	5.48e-04 7.13e-04	m³	
Shear area	axis 2 axis 1	Av1,p1 =	7.13e-04 4.50e-03		
	axis 2	$A_{V2,p1} =$	4.50e-03	m²	
BEAM'S CHARACTERISTIC:					
Length		0	6.18	m	
Multiplier for inflection	axis 1 axis 2	$\beta_1 = \beta_2 =$	2.00		
	axis 3	β ₃ =	1.00		
Attributes for the calculation of	of instability				
Diagram Plan 1 Tipo 9	Ψ 0.00	k _c 0.95	m _I		C _m 0.66
Plan 2 Tipo 2	-0.02	0.75	0.5		0.59
MATERIAL'S CHARACTERISTIC:					
Steel type		S355			
Processing		S355 Laminata E =	206.00	GPa	
Processing Modulus of elasticity Yield strength	(t < 40mm)	Laminata E = f _y =	206.00 355.00	MPa	
Processing Modulus of elasticity	(t < 40mm) (t < 40mm) (t > 40mm)	Laminata E =	206.00		
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength	(t < 40mm) (t > 40mm) (t > 40mm)	Laminata E = fy = fu = fy = fy = fy =	206.00 355.00 510.00 335.00 470.00	MPa MPa	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Ultimate strength Partial safety factor for resist	(t < 40mm) (t > 40mm) (t > 40mm) tance	Laminata $E = f_y = f_u = f_y = f_u = f_u = \gamma_{MO} = \gamma_{MO}$	206.00 355.00 510.00 335.00	MPa MPa MPa	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength	(t < 40mm) (t > 40mm) (t > 40mm) tance	Laminata E = fy = fu = fy = fy = fy =	206.00 355.00 510.00 335.00 470.00	MPa MPa MPa	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES:	(t < 40mm) (t > 40mm) (t > 40mm) tance	Laminata $E = f_y = f_u = f_y = f_u = f_u = \gamma_{M0} = \gamma_{M1} =$	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa MPa	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1</pre>	Laminata E = f_y = f_u = f_y = f_u = γ_{M0} = γ_{M1} = AF = -7 V1 = -2	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instal INTERNAL FORCES: Axial force	(t < 40mm) (t > 40mm) (t > 40mm) tance	Laminata E = f_y = f_u = f_y = f_u = γ_{M0} = γ_{M1} = $AF = -7 V1 = -2 V2 = 1$	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa MPa MPa	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instale INTERNAL FORCES: Axial force Shear forces Bending moments	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2</pre>	Laminata E = f_y = f_u = f_y = f_u = γ_{M0} = γ_{M1} = $AF = -7 V1 = -2 V2 = 1$	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa MPa MPa kN kN kN	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2</pre>	Laminata E = f_y = f_u = f_y = f_u = γ_{M0} = γ_{M1} = γ_{M1} = γ_{M1} = γ_{M1} = γ_{M2} = γ_{M3}	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa MPa MPa kN kN kN kN kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instale INTERNAL FORCES: Axial force Shear forces Bending moments	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2</pre>	Laminata E = $f_y = f_u = f_y = f_u = f_u = \gamma_{M0} = \gamma_{M1} = -7$ AF = -7 V1 = -2 V2 = 1 M1 = -3 M2 = -9 MT = -3	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa MPa MPa kN kN kN kN kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2</pre>	Laminata $E = f_y = f_u = f_u = f_y = f_u = f_u$	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa MPa kN kN kN kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2</pre>	Laminata E = $f_y = f_u = f_y = f_u = f_u = 700$	206.00 355.00 510.00 335.00 470.00 1.05 1.05	MPa MPa MPa MPa kN kN kN kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2</pre>	Laminata $E = f_y = f_u = f_u = f_y = f_u = f_u = 7000$ $AF = -7$ $V1 = -2$ $V2 = 1$ $M1 = -3$ $M2 = -9$ $MT = -3$ 2): dered: $C1 = y-y = 6$	206.00 355.00 510.00 335.00 470.00 1.05 1.05 2.38e02 2.51e00 .06e01 2.73e-02 2.09e-01 2.59e00	MPa MPa MPa MPa kN kN kN kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN Class of section for the internation of th	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2</pre>	Laminata E = $f_y = f_u = f_u = f_y = f_u = y_{M0} = y_{M1} = -7$ AF = -7 V1 = -2 V2 = 1 M1 = -3 M2 = -9 MT = -3 2): dered: C1 = $y-y = z-z = y-y = z-z = y_{Rd} $	206.00 355.00 510.00 335.00 470.00 1.05 1.05 2.38e02 2.51e00 .06e01 .73e-02 .09e-01 5.59e00 Classe 2 2-2 1-1 2389.09	MPa MPa MPa MPa kN kN kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN Axis with greater inertia Axis with less inertia Axial resistance	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2</pre>	Laminata E = $f_y = f_u = f_y = f_u = f_y = f_u = y_{M0} = y_{M1} = y_{M1} = -3$ AF = -7 V1 = -2 V2 = 1 M1 = -3 M2 = -9 MT = -3 2): dered: C1 = $y - y = z - z = y - y = z - z = y_{Rd} = y_{$	206.00 355.00 510.00 335.00 470.00 1.05 1.05 2.38e02 2.51e00 .06e01 .73e-02 .09e-01 .59e00 Classe 2 2-2 1-1 2389.09 878.12 0.98	MPa MPa MPa MPa MPa kN kN kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN Class of section for the intern Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2 arection 1 direction 2</pre>	Laminata E = $f_y = f_u = f_y = f_u = f_y = f_u = f_u = y_{M0} = y_{M1} = y_{M1} = -2$ AF = -7 V1 = -2 V2 = 1 M1 = -3 M2 = -9 MT = -3 2): dered: C1 = $y-y = z-z = y_{M1} = z-z = y_{M1} = z_{M1}$ Vpl,y,Rd = coeff = Vpl,y,T,Rd = y_{M1},z,Rd = y_{M1},z,	206.00 355.00 510.00 335.00 470.00 1.05 1.05 1.05 2.38e02 2.51e00 0.6e01 2.73e-02 2.09e-01 2.59e00 Classe 2 2-2 1-1 2389.09 878.12 0.98 8863.69 878.12	MPa MPa MPa MPa MPa kN kN kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN Class of section for the internal Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 1 direction 2 arection 1 direction 2</pre>	Laminata E = $f_y = f_u = f_y = f_u = f_y = f_u = f_u = y_{M0} = y_{M1} = $	206.00 355.00 510.00 335.00 470.00 1.05 1.05 1.05 2.38e02 2.51e00 0.6e01 2.73e-02 2.09e-01 2.59e00 Classe 2 2-2 1-1 2389.09 878.12 0.98 878.12 0.98	MPa MPa MPa MPa MPa kN kN kNm kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance Reduction for torsion	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 2 direction 2 arection 3 direction 4</pre>	Laminata E = $f_y = f_u = f_u = f_y = f_u = f_y = f_u = y_{M0} = y_{M1} = $	206.00 355.00 510.00 335.00 470.00 1.05 1.05 1.05 2.38e02 .51e00 .06e01 .73e-02 .09e-01 .59e00 Classe 2 2-2 1-1 2389.09 878.12 0.98 8863.69 878.12 0.98 8863.69	MPa MPa MPa MPa MPa kN kN kN kNm kNm kNm kNm kNm	
Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for resist Partial safety factor for instak INTERNAL FORCES: Axial force Shear forces Bending moments Torque moment RESISTANCE OF CROSS-SECTIONS (EN Class of section for the intern Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion	<pre>(t < 40mm) (t > 40mm) (t > 40mm) tance pility direction 1 direction 2 direction 2 direction 2 arection 3 direction 4</pre>	Laminata E = $f_y = f_u = f_y = f_u = f_y = f_u = f_u = y_{M0} = y_{M1} = $	206.00 355.00 510.00 335.00 470.00 1.05 1.05 1.05 2.38e02 2.51e00 .06e01 .73e-02 .09e-01 .59e00 Classe 2 2-2 1-1 2389.09 878.12 0.98 8863.69 878.12 0.98 8863.69 240.96 1.00	MPa MPa MPa MPa MPa kN kN kN kNm kNm kNm kNm kNm	

Design resistance for bending axis z Reduction for shear	$M_{z,Rd} =$ coeff =	1.00	kNm
	$M_z, v, Rd =$	240.96	kNm
Design torsional resistance	$T_{Rd} =$	218.49	kNm
Verification of plastic resistance for axial as	nd bendin	g moment	
$(N_{Ed}/N_{Rd}) + (M_{y,Ed}/M_{y,Rd}) + (M_{z,Ed}/M_{z,Rd}) \le 1$	$F_{R-PF} =$	0.31	Verificato
Verification of plastic resistance for shear			
$(V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}) \le 1$	$F_{R-V} =$	0.02	Verificato
Verification of elastic resistance for torsion			
$(T_{Ed}/T_{Rd}) \leq 1$	$F_{R-T} =$	0.02	Verificato
Verification of elastic resistance for tensile	stress		
$\tau_{\rm Ed} \cdot \sqrt{(3)} \cdot \gamma_{\rm M0} / f_{\rm Y} \leq 1$	$F_{R-\tau} =$	0.03	Verificato
DUCKT THE DESCRIPTION FOR MEMBERS (THE 1992 1 1 C			

Class of section for the internal force considered:

Cl = Classe 2

Axial force $N_{\text{ED}} = -7.38e02 \qquad kN$ Bending moment $M_{\text{Z,ED}} = -1.22e01 \quad kNm$ $M_{\text{y,ED}} = 5.91e01 \quad kNm$

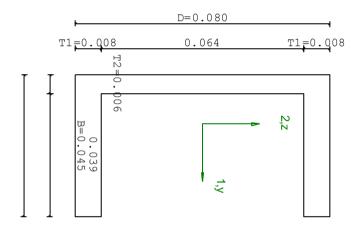
Table of critical loads

	Critical	Buckling	Non-dimensional	Reduction
Axis	force	length	slenderness	factor
	Pcr [kN]	ℓ_0 [m]	λ^{\star}	χ
У	4808.56	6.18	0.72	0.84
Z	1202.14	12.37	1.44	0.40
Design bucklir	na resistance	Min	$N_{b,Rd} =$	9.48e02 kN
2001911 20011111	19 10010001100	axis y	Nb, v, Rd =	2.00e03 kN
		axis z	$N_{b,z,Rd} =$	9.48e02 kN
Design bucklin	ng resis. moment	axis y	$M_{b,y,Rd} =$	2.50e02 kNm
		axis z	$M_{z,Rd} =$	2.41e02 kNm
Interaction fa	actors		k _{yy} =	0.71
			k _{yz} =	0.64
			k _{zy} =	0.43
			$k_{zz} =$	1.07

Buckling resistance for uniform member in axial compression

 $N_{\text{Ed}}/N_{\text{b,Rd}} \leq 1$ $F_{\text{I-N}} = 0.78$ (Verificato)

Buckling resistance for uniform member in bending and axial compression $\ensuremath{\mathsf{B}}$


 $(N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yz} (M_{z,Ed}/M_{z,Rd}) \le 1 \qquad F_{R-PF,y} = 0.52 \qquad \text{(Verificato)}$ $(N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1 \qquad F_{R-PF,z} = 0.98 \qquad \text{(Verificato)}$

5.1.6. Verifica prop. 5

PROP. 5 - BEAM n. 114 - SECTION IN X = 0.00

p.:	CON	ITROVENTI	PIANO	Trave:	114	Prop.: 5	Sez.in:	0.
		М	1 = 0.0	0		M2 = 0	.00	
LC	28	N	= -111.	24		V1 = 0	.00	
		V	2 = 0.0	0		MT = 0	.00	
			Sezi	lone a C	chi	usa		
	D =	0.0800	B = 0.0	0450 T1	. = 0	.0080 T2 =	0.0060	
		Are	ea	=	1.1	5e-03		
		I1	1	=	1.0	6e-06		
		I2	2	=	1.9	4e-07		

STATIC PARAMETERS OF SECITIO	N			
Altezza totale		D =	0.08	m
Base		В =		m
Spessore ali		T1 =	8.00e-03	m
Spessore anima		T2 =	6.00e-03	m
Location of elastic center o	f gravity	X1G,el	= 0.02	m
		X2G,el	= 0.04	m
Location of plastic center o	f gravity	X1G,pl	= 0.01	m
		X _{2G} ,pl	= 0.04	m
Distance center of gravity	- shear center	$x_{1CT}-x_{1G}$	= -0.03	m
		$X_{2CT}-X_{2G}$	= 0.00	m
Section area		A =	1.15e-03	m²
Moment of inertia	axis 1	I ₁₁ =	1.06e-06	m^4
	axis 2	I ₂₂ =	1.94e-07	m^4
	axis 3		2.11e-08	
Polar moment respect to shea	r center	Ip =	2.38e-06	m^4
Warping constant			2.36e-10	m ⁶
Radius of gyration	axis 1	i ₁₁ =		m
3-	axis 2	i ₂₂ =	0.01	m
Elastic section modulus	Тор	Wisinel =	= 2.65e-05	m ³
	Lower	* *	= 2.65e-05	
Elastic section modulus	Right	, .	6.63e-06	
	Left		1.23e-05	m ³
Plastic section modulus	axis 1		3.21e-05	m ³
	axis 2	, ,	1.33e-05	m ³
		, p-		

Shear area	axis 1 axis 2	$A_{V1,p1} = A_{V2,p1} =$	7.20e-04 4.32e-04		
BEAM'S CHARACTERISTIC:					
Length Multiplier for inflection	axis 1 axis 2 axis 3	$\beta_2 = 0$	2.83 0.50 0.50 1.00	m	
Attributes for the calculati					
Diagram Plan 1 Tipo 1 Plan 2 Tipo 1	Ψ 1.00 1.00	k _c 1.00 1.00	1.	00 00	C _m 1.00 1.00
MATERIAL'S CHARACTERISTIC:					
Steel type Processing Modulus of elasticity Yield strength Ultimate strength Yield strength Ultimate strength Partial safety factor for re Partial safety factor for in		$f_y = 3$ $f_u = 3$	355.00 510.00	GPa MPa MPa MPa MPa	
INTERNAL FORCES:					
Axial force Shear forces Bending moments	direction 1 direction 2 direction 1	V2 = 0.0	11e02 00e00 00e00 00e00	kN kN kN kNm	
Torque moment	direction 2	M2 = 0.0	00e00 00e00	kNm kNm	
RESISTANCE OF CROSS-SECTIONS	(EN 1993-1-1 § 6	.2):			
Class of section for the in	·				
Axis with greater inertia Axis with less inertia	301.01	C1 = y-y =	Classe : 1-1 2-2	1	
Axial resistance		$N_{Rd} = 3$	388.81	kN	
Design plastic shear resista Reduction for torsion	nce axis y	$V_{pl,y,Rd} = coeff = V_{pl,y,T,Rd} =$	1.00	kN kN	
Design plastic shear resista Reduction for torsion	nce axis z	$V_{pl,z,Rd} = 0$ coeff = 0 $V_{pl,z,T,Rd} = 0$	1.00	kN kN	
Design resistance for bending Reduction for shear	g axis y	$M_{y,Rd} =$ $coeff =$	10.84	kNm	
Design resistance for bending Reduction for shear	g axis z	$M_{y,V,Rd} =$ $M_{z,Rd} =$ $coeff =$	10.84 4.49 1.00	kNm kNm	
Parker handers and acceptance		$M_{z,V,Rd} =$	4.49	kNm	
Design torsional resistance		$T_{Rd} =$	0.51	kNm	
Verification of plastic resi (N_{Ed}/N_{Rd}) + $(M_{y}, E_{d}/M_{y}, R_{d})$ + Verification of plastic resi	$(M_{z,Ed}/M_{z,Rd}) \leq 1$ stance for shear	$F_{R-PF} =$	0.29	Verificato	
$(V_y, Ed/V_y, Rd) + (V_z, Ed/V_z, Rd) \le Verification of elastic resi$			0.00	Verificato	
$(T_{Ed}/T_{Rd}) \le 1$ Verification of elastic resi	stance for tensile		0.00	Verificato	
$\tau_{\rm Ed} \cdot \sqrt{(3)} \cdot \gamma_{\rm M0} / f_{\rm Y} \leq 1$		$F_{R-\tau} =$	0.00	Verificato	

Class of section for the internal force considered:

Cl = Classe 1

Axial force Bending moment $N_{ED} = -1.11e02$ kN $M_{z,ED} = 0.00e00$ kNm $M_{y,ED} = 0.00e00$ kNm

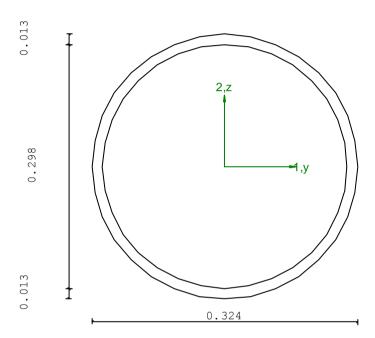
Tahla	o f	ori	+ic	a 1	loads

	Critical	Buckling	Non-dimensional	L Reduction	
Axis	force	length	slenderness	factor	
	Pcr [kN]	ℓ_0 [m]	λ^*	χ	
У	1098.49	1.41	0.61	0.78	
Z	201.04	1.41	1.43	0.34	
θ	855.72	2.83	0.69	0.73	
min	201.04		1.43	0.34	
	Mcr [Nmm]	ℓ_0 [mm]	${\lambda^{\star}}_{\scriptscriptstyle \mathrm{LT}}$	$\chi_{ ext{LT}}$	
Bending/torsion	6.19	2.83	1.36	0.32	
Design buckling	resistance	Min		1.32e02 kN	
		axis y	$N_{b,y,Rd} =$	3.03e02 kN	
		axis z	$N_{b,z,Rd} =$	1.32e02 kN	
Design buckling	resis. moment	axis y	Mb ,, pd =	3.46e00 kNm	
5		axis z		4.49e00 kNm	
Tobanashian fas	.		1	1 1 5	
Interaction fac	LOIS		2.2	1.15	
			k _{yz} =	1.31	
			k _{zy} =	0.89	
			$k_{zz} =$	2.18	

Buckling resistance for uniform member in axial compression

 $N_{Ed}/N_{b,Rd} \le 1$ $F_{I-N} = 0.84$ (Verificato)

Buckling resistance for uniform member in bending and axial compression


 $(N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yz} (M_{z,Ed}/M_{z,Rd}) \le 1 \qquad F_{R-PF,y} = 0.37 \qquad \text{(Verificato)}$ $(N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1 \qquad F_{R-PF,z} = 0.84 \qquad \text{(Verificato)}$

5.1.7. Verifica prop. 13

PROP. 13 - BEAM n. 105 - SECTION IN X = 0.00

p.:	Tra	versa stralli	Trave:	105	Prop.: 13	Sez.in:	0.
		M1 = -125	.96		M2 = 78	3.00	
LC	27	N = 2.23	3		V1 = 31	4.90	
		V2 = -194	.73		MT = 0	.00	
		Sezion	ne Circ	olare	e cava		
		D = 0.	3239 5	г1 =	0.0127		
		Area		= 1.2	24e-02		
		I11		= 1.5	51e-04		
		I22		= 1.5	51e-04		

Location of elastic center of gravity	X1G,el	= 0.16	m
	X _{2G,e1}	= 0.16	m
Location of plastic center of gravity	X _{1G} ,pl	= 0.16	m
	X2G,pl	= 0.16	m
Distance center of gravity - shear center	X1CT-X1G	= 0.00	m
	X2CT-X2G	= 0.00	m
Section area	A =	1.24e-02	m²
Moment of inertia axis 1	I ₁₁ =	1.51e-04	m^4
axis 2	I ₂₂ =	1.51e-04	m^4
axis 3	J =	3.01e-04	m^4
Polar moment respect to shear center	$I_p =$	3.01e-04	m^4
Warping constant	$I_{\omega} =$	0.00	m^6
Radius of gyration axis 1	i ₁₁ =	0.11	m
axis 2	i ₂₂ =	0.11	m

Top

Lower

Right

Left

axis 1

axis 2

axis 1 axis 2

D

Т1

0.32

0.01

 $W_{1 \text{ sup,el}} = 9.32e-04$

 $W_{1 \text{ inf,el}} = 9.32e-04$

9.32e-04

9.32e-04

7.89e-03

7.89e-03

1.23e-03

1.23e-03

 $W_{2 \text{ dx,el}} =$

 $W_{2 \text{ sx,el}} =$

W1,p1 =

W₂,_{p1} =

A_{V1},_{p1} =

Av2,p1 =

m

m

m³

m³

 ${\rm m}^{\, {\rm \tiny 3}}$

m³

 $^{
m m}^{
m 3}$ $^{
m m}^{
m 2}$

Elastic section modulus

Elastic section modulus

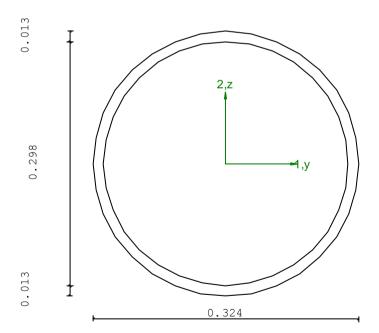
Plastic section modulus

Shear area

STATIC PARAMETERS OF SECITION

Diametro

Spessore


BEAM'S CHARACT	TERISTIC:					
Length				0.40	m	
Multiplier for	r inflection	axis 1	$\beta_1 =$	1.00		
narcipiler for	111110001011	axis 2	$\beta_2 =$	1.00		
		axis 3	$\beta_3 =$	1.00		
		axis J	p ₃ –	1.00		
Attributes for	the calculation	of instability				
	Diagram	Ψ	kc		$m_{ m LT}$	Cm
Plan 1	Tipo 2	0.00	0.75	C	0.60	0.60
Plan 2	Tipo 2	0.00	0.75	C	0.60	0.60
MATERIAL'S CHA	ARACTERISTIC:					
			*055			
Steel type			S355			
Processing Modulus of ela	noticity		Lamina	206.00	GPa	
Yield strength		(t < 40mm)	f _v =	355.00	MPa	
Ultimate stren		(t < 40mm)	f _u =	510.00	MPa	
Yield strength	-	(t > 40mm)	f _v =	335.00	MPa	
Ultimate stren		(t > 40mm)	fu =	470.00	MPa	
	, factor for resis	,	γ _{м0} =	1.05		
-	/ factor for instal		γ _{M1} =	1.05		
			,			
INTERNAL FORCE	ES:					
Axial force			AF =	2.23e00	kN	
Shear forces		direction 1	V1 =	3.15e02	kN	
		direction 2	V2 = -	-1.95e02	kN	
Bending moment	cs	direction 1		-1.26e02	kNm	
		direction 2	M2 =		kNm	
Torque moment			MT =	0.00e00	kNm	
RESISTANCE OF	CROSS-SECTIONS (E	N 1993-1-1 § 6.	2):			
Class of sect	tion for the inter	nal force consi		G1	1	
7			C1 =	Classe	1	
Axis with grea	less inertia		y-y = $z-z =$	2-2		
Axial resistar				1-1 4192.38	kN	
AXIAI TESISCAI	ice		INRd —	4192.30	KIN	
Design plastic	shear resistance	axis v	Vpl,v,Rd	= 1540.92	kN	
	for torsion	±		= 1.00		
			Vpl,y,T,R	=1540.92	kN	
	shear resistance	axis z	-	= 1540.92	kN	
Reduction	for torsion			= 1.00	1.37	
			Vpl,z,T,R	=1540.92	kN	
Design resists	ance for bending	axis y	$M_{y,Rd} =$	416.07	kNm	
_	for shear	aris y	coeff:		KIVIII	
Reduction	TOT SHEAT			= 416.07	kNm	
			17.7			
-	ance for bending	axis z	M_z , Rd =	416.07	kNm	
Reduction	for shear		coeff :	= 1.00		
			$M_{z,V,Rd} =$	416.07	kNm	
Design torsion	nal resistance		$T_{Rd} =$	377.12	kNm	
Design Colsion	iai lesistance		IRd —	377.12	KIMII	
Verification o	of plastic resistan	nce for axial a	nd bendi	ing moment		
	$(M_y,_{Ed}/M_y,_{Rd}) + (M_z,_{Ed})$		F _{R-PF} =	0.36	Verificato	
Verification o	of plastic resista	nce for shear				
$(V_{v,Ed}/V_{v,Rd})$	$) + (V_z, Ed/V_z, Rd) \leq 1$		$F_{R-V} =$	0.33	Verificato	
	of elastic resista	nce for torsion				
$(T_{Ed}/T_{Rd}) \leq$	1		$F_{R-T} =$	0.00	Verificato	
Verification o	of elastic resista	nce for tensile	stress			
$\tau_{\text{Ed}} \cdot \sqrt{(3)} \cdot \gamma_{\text{M}}$	$_{10}/f_{y} \leq 1$		$F_{R-\tau} =$	0.30	Verificato	
BUCKLING PROTO	THANCE FOR MEMBERS	/FN 1002-1-1 5	6 31 .			
	STANCE FOR MEMBERS					
Class of sect	tion for the inter	nal force consi		~ ·	1	
3-1-1 C-1			C1 =	Classe		
Axial force	_		$N_{ED} =$ $M = -$	2.23e00	kN 12 kNm	
Bending moment	-		$M_{z,ED} = M_{y,ED} =$	-1.26e()2 KNM)1 kNm	
			11y,EU -	,.000	, _ JEIVILL	

(Verificato) (Verificato)

Table of crit	cical loads				
	Critical	Buckling	Non-dimensiona	l Reduc	tion
Axis	force	length	slenderness	fact	tor
	Pcr [kN]	ℓ_0 [m]	λ^{\star}	χ	
У	1.96e06	0.40	0.05	1.0	00
Z	1.96e06	0.40	0.05	1.0	00
Design buckl:	ing resistance	Min	N _{b,Rd} =	4.19e03	kN
3	3	axis y			
		axis z	$N_{b,z,Rd} =$	4.19e03	kN
Design buckl:	ing resis. moment	axis y			
		axis z	$M_{z,Rd} =$	4.16e02	kNm
Interaction :	factors		k _{yy} =	0.60	
			kyz =	0.36	
			k _{zy} =	0.36	
			$k_{zz} =$	0.60	
Buckling res	istance for unifor	m member in	axial compressi	on	
$N_{Ed}/N_{b,Rd} \leq$	1		$F_{I-N} = 0$	0.00	(Verificato)
Buckling res	istance for unifor	m member in	bending and axi	al compre	ession

PROP. 13 - BEAM n. 102 - SECTION IN X = 1.00

p.:	Tra	versa	stralli	Trave:	102	Prop.: 13	Sez.in:	1.
LC	27		M1 = -87 N = -5. V2 = -9	32		M2 = 78 $V1 = -2$ $MT = -1$	8.04	
				ne Ciro				
Area I11 I22			= 1.	24e-02 51e-04 51e-04				

STATIC PARAMETERS OF SECITION		
Diametro	D = 0	.32 m
Spessore	T1 = 0	.01 m
Location of elastic center of gravity	$x_{1G,el} = 0.1$	16 m
	$x_{2G,el} = 0.1$	16 m
Location of plastic center of gravity	$x_{1G,p1} = 0.1$	16 m
	$x_{2G,p1} = 0.1$	16 m

Distance center of gravity - s	shear center	$x_{1CT}-x_{1G} = 0.00$ $x_{2CT}-x_{2G} = 0.00$	m m	
Section area		A = 1.24e-02	m²	
Moment of inertia	axis 1	$I_{11} = 1.51e-04$		
Moment of Ineftia	axis 2	$I_{22} = 1.51e - 04$		
	axis 3	J = 3.01e - 04		
Polar moment respect to shear of		$I_p = 3.01e-04$	m ⁴	
	CITCCI	1	m ⁶	
Warping constant Radius of gyration	axis 1	$I_{\omega} = 0.00$ $i_{11} = 0.11$	m.	
Radius of gyracion	axis 2	$i_{22} = 0.11$	m	
	dXIS Z	122 - 0.11	111	
Elastic section modulus	Top	$W_{1 \text{ sup,el}} = 9.32e-04$	m³	
Elastic Section modulus	Lower	$W_{1 \text{ inf,el}} = 9.32e-04$		
Elastic section modulus	Right	$W_{2 \text{ dx,el}} = 9.32e-04$		
Blasele section modulus	Left	$W_{2 \text{ sx,el}} = 9.32e-04$		
Plastic section modulus	axis 1	$W_{1,p1} = 1.23e-03$	m³	
riabele section modulus	axis 2	$W_{2,p1} = 1.23e - 03$	m³	
Shear area	axis 1	$A_{V1,p1} = 7.89e-03$		
Silour aroa	axis 2	$A_{V2,p1} = 7.89e-03$		
	unib 2	71v2,p1 ,.03C 03	111	
BEAM'S CHARACTERISTIC:				
Length		1.00	m	
Multiplier for inflection	axis 1	$\beta_1 = 1.00$		
TOTAL TOT THE TECTION		, =		
	axis 2	$\beta_2 = 1.00$		
	axis 3	$\beta_3 = 1.00$		
Attributes for the colonial	of instability			
Attributes for the calculation	_	,		
Diagram	Ψ	k _c m		C _m
Plan 1 Tipo 2	0.68	0.90 0.		0.87
Plan 2 Tipo 2	0.90	0.97 0.	96	0.96
MATERIAL'S CHARACTERISTIC:				
MATERIAL'S CHARACTERISTIC:				
Chaol time		S355		
Steel type		Laminata		
Processing Modulus of elasticity		E = 206.00	GPa	
	(t < 40mm)	$f_v = 355.00$	MPa	
Yield strength Ultimate strength	(t < 40mm)	$f_u = 510.00$	Mra MPa	
			Mra MPa	
Yield strength Ultimate strength	(t > 40mm) (t > 40mm)	$f_y = 335.00$ $f_u = 470.00$	Mra MPa	
<u> </u>			MFa	
Partial safety factor for resis		$\gamma_{M0} = 1.05$		
Partial safety factor for insta	ability	$\gamma_{M1} = 1.05$		
INTERNAL FORCES:				
7		3 E 22-00	1.37	
Axial force	at	AF = -5.32e00	kN	
Shear forces	direction 1	V1 = -2.80e01	kN	
Dan Mary manager	direction 2	V2 = -9.45e00	kN	
Bending moments	direction 1	M1 = -8.77e01	kNm	
Manage and the second	direction 2	M2 = 7.80e01	kNm	
Torque moment		MT = -1.26e00	kNm	
RESISTANCE OF CROSS-SECTIONS (E	N 1993-1-1 & 6	2) ·		
LEGISTANCE OF CROSS-SECTIONS (E	114 TAAA T-T A O	/ .		
Class of section for the inter	nal force cons	idered:		
1	10100 001101	Cl = Classe	1	
Axis with greater inertia		y-y = 2-2		
Axis with less inertia		z-z = 1-1		
WYT2 MICH 1622 THEFTIG		∠-∠ — 1-1		
Axial resistance		$N_{Rd} = 4192.38$	kN	
IMIGI ICOIOCANCE		14KG 7192.30	1714	
Design plastic shear resistance	avie v	$V_{pl,y,Rd} = 1540.92$	kN	
Reduction for torsion	. алто у	$v_{p1,y,Rd} = 1340.92$ coeff = 1.00	VIA	
reduceton for corston		$V_{pl,y,T,Rd} = 1535.76$	kN	
		vp1,y,T,Rd -1333./0	1714	
Design plastic shear resistance	avis 7	$V_{pl,z,Rd} = 1540.92$	kN	
Reduction for torsion	. uni) L	$v_{p1,z,Rd} = 1340.92$ coeff = 1.00	1714	
reduceton for corston		$V_{pl,z,T,Rd} = 1535.76$	kN	
		vpl,z,T,Rd -1333./0	VIA	
Design resistance for hending	axie v	M., pd = 416 07	kNm	
Design resistance for bending	axis y	$M_{y,Rd} = 416.07$	kNm	
Reduction for shear	axis y	coeff = 1.00		
=	axis y		kNm kNm	
Reduction for shear	-	coeff = 1.00 $M_{y,v,Rd} = 416.07$	kNm	
Reduction for shear Design resistance for bending	axis y	coeff = 1.00 $M_{y,V,Rd}$ = 416.07 $M_{z,Rd}$ = 416.07		
Reduction for shear	-	coeff = 1.00 $M_{y,v,Rd} = 416.07$	kNm	

Design torsional resistance	T_{Rd} =	377.12	kNm
Verification of plastic resistance for axial a	nd bendin	g moment	
$(N_{Ed}/N_{Rd}) + (M_{y,Ed}/M_{y,Rd}) + (M_{z,Ed}/M_{z,Rd}) \le 1$	$F_{R-PF} =$	0.28	Verificato
Verification of plastic resistance for shear			
$(V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}) \le 1$	$F_{R-V} =$	0.02	Verificato
Verification of elastic resistance for torsion			
$(T_{Ed}/T_{Rd}) \leq 1$	$F_{R-T} =$	0.00	Verificato
Verification of elastic resistance for tensile	stress		
$\tau_{\text{Ed}} \cdot \sqrt{(3)} \cdot \gamma_{\text{M0}} / f_{\text{y}} \leq 1$	$F_{R-\tau} =$	0.03	Verificato
Verification of plastic resistance for shear $(V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}) \leq 1$ Verification of elastic resistance for torsion $(T_{Ed}/T_{Rd}) \leq 1$ Verification of elastic resistance for tensile	$F_{R-V} =$ $F_{R-T} =$ stress	0.02	Verificato Verificato

Class of section for the internal force considered:

Cl = Classe 1

Axial force Bending moment $N_{ED} = -5.32e00$ kN $M_{z,ED} = -8.77e01$ kNm $M_{y,ED} = 8.68e01$ kNm

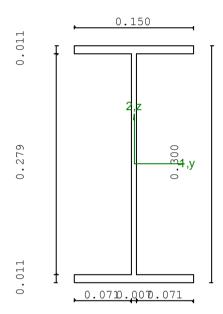
Table of critical loads

Axis	Critical force	Buckling length	Non-dimensional slenderness	Reduction factor	
y z	P _{cr} [kN] 3.13e05 3.13e05	ℓ₀ [m] 1.00 1.00	λ* 0.12 0.12	χ 1.00 1.00	
Design buckling	resistance	Min axis y axis z	Nb,y,Rd =	4.19e03 kN 4.19e03 kN 4.19e03 kN	
Design buckling	resis. moment	axis y axis z	$M_{b, y, Rd} = M_{z, Rd} =$	4.18e02 kNm 4.16e02 kNm	
Interaction fact	tors		$k_{yy} = k_{yz} = k_{zy} = k_{zz} = k_{zz} =$	0.96 0.52 0.58 0.87	

Buckling resistance for uniform member in axial compression

 $N_{Ed}/N_{b,Rd} \leq$ 1 $F_{I-N} = 0.00$ (Verificato)

Buckling resistance for uniform member in bending and axial compression $% \left(1\right) =\left(1\right) \left(1\right) \left($

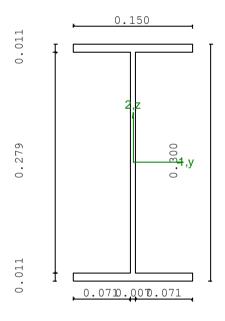

 $(N_{Ed}/N_{b,\,y,\,Rd}) + k_{yy} (M_{y,\,Ed}/M_{b,\,y,\,Rd}) + k_{yz} (M_{z,\,Ed}/M_{z,\,Rd}) \leq 1 \qquad F_{R-PF,\,y} = 0.30 \qquad (Verificato) \\ (N_{Ed}/N_{b,\,z,\,Rd}) + k_{zy} (M_{y,\,Ed}/M_{b,\,y,\,Rd}) + k_{zz} (M_{z,\,Ed}/M_{z,\,Rd}) \leq 1 \qquad F_{R-PF,\,z} = 0.31 \qquad (Verificato)$

5.1.8. Verifica prop. 18

PROP. 18 - BEAM n. 44 - SECTION IN X = 0.00

.:	TRA	VI TRAS	V IRRIGD	Trave:	44	Prop.:	18	Sez.in: 0
			M1 = 6.04	4		M2 = 3	3.56	Se-03
LC	29		N = -0.23	3		V1 =	-5	.86
			V2 = 2.1	7		MT = 1	.24	e-04
			Se	z. a Doj	pio	Т		
	D =	0.3000	B1 = 0.3	1500 т	L = (0.0107 1	12 =	- 0.0107
			T3 = 0.	0071 E	2 =	0.1500		
		A	rea	=	5.3	88e-03		
		I	11	=	8.3	86e-05		
		I	22		6.0	14e-06		

STATIC PARAMETERS OF SECITION D 0.30 Altezza totale m Base inferiore В1 0.15 m Spessore flangia inferiore Т1 = 0.01 m Spessore flangia superiore Т2 0.01 m Spessore anima Т3 7.10e-03 m Base superiore 0.15 m Location of elastic center of gravity X1G,el m = 0.15X2G,el m = 0.07 Location of plastic center of gravity $X_{1G,p1}$ m = 0.15X_{2G},_{pl} m Distance center of gravity - shear center X1CT-X1G = 0.00 m = 0.00 X2CT-X2G m 5.38e-03 Section area A = m^2 Moment of inertia axis 1 $I_{11} =$ 8.36e-05 ${\rm m}^4$ axis 2 I₂₂ = 6.04e-06 ${\rm m}^4$ axis 3 J = 1.56e-07 m^4 Polar moment respect to shear center $I_p =$ 8.60e-05 ${\rm m}^4$ Warping constant $I_{\omega} =$ 1.26e-07 m^6 i₁₁ = Radius of gyration axis 1 0.12 m axis 2 $i_{22} =$ 0.03 m Elastic section modulus $W_{1 \text{ sup,el}} = 5.57e-04$ Top m³ $W_{1 \text{ inf,el}} = 5.57e-04$ m³ Lower $W_{2 \text{ dx,el}} =$ 8.05e-05 Elastic section modulus Right m³ Left $W_{2 \text{ sx,el}} =$ 8.05e-05 $\rm m^{\,3}$ axis 1 6.02e-04 m³ Plastic section modulus $W_{1,pl} =$


Shear area		axis 2 axis 1 axis 2	$A_{V1,p1} = A_{V2,p1} =$		-03 m²	
BEAM'S CHARACTERI	STIC:					
Length				1.00	m	
Multiplier for in	flection	axis 1 axis 2 axis 3	$\beta_1 = \beta_2 = \beta_3 =$	1.00 1.00 1.00	M.	
Attributes for th	e calculat	ion of instability	,			
Plan 1	Diagram	ν ο 3	k _c 0.76		m _{LT} 0.61	C _m 0.61
Plan 2	Tipo 2 Tipo 2	0.03 0.00	0.76		0.60	0.60
MATERIAL'S CHARAC	TERISTIC:					
Steel type			S355			
Processing			Lamina	ıta		
Modulus of elasti	city		E =	206.00	GPa	
Yield strength		(t < 40mm)	$f_y =$	355.00	MPa	
Ultimate strength		(t < 40mm)	fu =	510.00	MPa	
Yield strength		(t > 40mm)	fy =	335.00	MPa	
Ultimate strength		(t > 40mm)	fu =	470.00	MPa	
Partial safety fa			$\gamma_{\text{M0}} =$	1.05		
Partial safety fa	ctor for 1	nstability	$\gamma_{\text{Ml}} =$	1.05		
INTERNAL FORCES:						
Axial force			AF =	-2.34e-01	kN	
Shear forces		direction 1	V1 =	-5.86e00	kN	
		direction 2		2.17e00	kN	
Bending moments		direction 1	M1 =	6.04e00	kNm	
2						
-		direction 2	M2 =		kNm	
Torque moment RESISTANCE OF CRO		direction 2 S (EN 1993-1-1 § 6 nternal force cons	MT = 5.2):	1.24e-04	kNm	
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec	for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct	MT = (5.2): idered: Cl = (10)		kNm	
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec	for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct	MT = (5.2): idered: Cl = (100) y = (100)	1.24e-04 Class	kNm	
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate	for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct	MT = idered: Cl = ion y = z =	1.24e-04 Class 0.07 0.15	e 4	
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str	for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct	MT = idered: C1 = ion y = z = Gpf =	1.24e-04 Class 0.07 0.15 -75006.37	e 4 m m MPa	
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str	for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct	MT = idered: C1 = ion y = z = opf =	1.24e-04 Class 0.07 0.15	e 4	
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s	for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct l forces	$\begin{array}{l} \text{MT =} \\ \text{idered:} \\ \text{Cl =} \\ \text{ion} \\ \text{y =} \\ \text{z =} \\ \\ \sigma_{pf} = \\ \tau_{max} = \end{array}$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13	e 4 m m MPa MPa	
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s	for the i	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$	$\begin{array}{l} \text{MT =} \\ \text{idered:} \\ \text{Cl =} \\ \text{ion} \\ \text{y =} \\ \text{z =} \\ \\ \sigma_{\text{pf}} = \\ \tau_{\text{max}} = \\ \\ \sigma_{\text{VM}} = \end{array}$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13	e 4 m m MPa MPa MPa	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s	for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct l forces	$\begin{array}{l} \text{MT =} \\ \text{idered:} \\ \text{Cl =} \\ \text{ion} \\ \text{y =} \\ \text{z =} \\ \\ \sigma_{pf} = \\ \tau_{max} = \end{array}$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13	e 4 m m MPa MPa	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress	for the intion veriffst internatess	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$	$MT = \frac{1}{5.2}$ $C1 = \frac{1}{5.2}$ $C1 = \frac{1}{5.2}$ $T = \frac{1}{$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13	e 4 m m MPa MPa MPa	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress	for the internation that internations the formula internations the season of the seaso	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$	$MT = \frac{1}{5.2}$ $C1 = \frac{1}{5.2}$ $C1 = \frac{1}{5.2}$ $OP = \frac{1}{5.2}$ $OP = \frac{1}{5.2}$ $OVM = \frac{1}{5.2}$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13	e 4 m m MPa MPa MPa	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN	for the internation that internations the formula internations the season of the seaso	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1	$MT = \frac{1}{5.2}$ $C1 = \frac{1}{5.2}$ $C1 = \frac{1}{5.2}$ $OP = \frac{1}{5.2}$ $OP = \frac{1}{5.2}$ $OVM = \frac{1}{5.2}$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13	kNm e 4 m m MPa MPa MPa Verific	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section	for the internation that internations the formula internations the season of the seaso	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1	$MT = \frac{1}{5.2}$ idered: $C1 = \frac{1}{5.2}$ $T = \frac{1}{5.2}$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22	kNm e 4 m m MPa MPa MPa Verific	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force	for the internation that internations the formula internations the season of the seaso	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1	$MT = \frac{1}{5.2}$ idered: $C1 = \frac{1}{5.2}$ $T = \frac{1}{5.2}$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01	kNm e 4 m m MPa MPa Verific	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force	for the internation that internations the formula internations the season of the seaso	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1	$\begin{array}{l} \text{MT =} \\ \text{S.2):} \\ \text{idered:} \\ \text{Cl =} \\ \text{ion} \\ \text{y =} \\ \text{z =} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.24e-04 Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e	e 4 m m MPa MPa Verific	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment	for the internation that internates tress	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1	$MT = \begin{bmatrix} 5.2 \\ 5.2 \\ \end{bmatrix}:$ idered: $C1 = \\ ion$ $Y = \\ Z = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e	e 4 m m MPa MPa Verific e 1 kN e000 kNm	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical	for the internation that internates tress	S (EN 1993-1-1 § 6 nternal force consied without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 nternal force cons	$MT = \begin{bmatrix} 5.2 \\ 5.2 \\ \end{bmatrix}:$ idered: $C1 = \\ ion$ $Y = \\ Z = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1.24e-04 Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	e 4 m m MPa MPa Verific e 1 kN e000 kNm	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical	for the internation verifies verifies verifies the internation verifies veri	s (EN 1993-1-1 § 6 nternal force consided without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 nternal force cons	MT = (3.2): didered: Cl = ion y = z = \sigma_{pf} = \tau_{max} = \sigma_{vM} = F_R = S 6.3): cl = N_{ED} = M_{Z,ED} = M_{Y,ED} =	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	kNm e 4 m m MPa MPa Verific e 1 kN e000 kNm	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical	for the internation verifies tinternations to the session of the s	s (EN 1993-1-1 § 6 nternal force consided without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 nternal force cons	MT = idered: C1 = ion y = z = σ _{pf} = τ _{max} = σ _{VM} = F _R = \$ 6.3): idered: C1 = M _{z,ED} = M _{y,ED} = n-dimens:	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	kNm e 4 m m MPa MPa Verific e 1 kN e00 kNm e00 kNm	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical Axis Y	cess tress CE FOR MEM for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct l forces	$\begin{array}{l} \text{MT} = \\ \text{S.2):} \\ \text{idered:} \\ \text{Cl} = \\ \text{ion} \\ \text{y} = \\ \text{z} = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	kNm e 4 m m MPa MPa Verific e 1 kN e00 kNm duction factor x 1.00	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical Axis Y	for the internation verifies tinternation verifies tinternations. CE FOR MEM for the internation of the in	S (EN 1993-1-1 § 6 nternal force cons ied without deduct l forces $ σ_{VM} = \sqrt{(σ_{pf}^2 + 3τ_{max}^2)} $ $ σ_{VM}/f_d $ BERS (EN 1993-1-1 nternal force cons Buckling Nonlength $ ℓ_0 [m] $	$ \begin{aligned} &\text{MT} = \\ &\text{idered:} \\ &\text{Cl} = \\ &\text{ion} \\ &\text{y} = \\ &\text{z} = \\ &\text{G}_{\text{pf}} = \\ &\text{\tau}_{\text{max}} = \\ &\text{G}_{\text{VM}} = \\ &\text{F}_{\text{R}} = \\ &\text{S 6.3):} \\ &\text{idered:} \\ &\text{Cl} = \\ &\text{M}_{\text{Z,ED}} = \\ &\text{M}_{\text{y,ED}} = \\ &\text{n-dimens:} \\ &\text{slenderne} \\ &\lambda^* \end{aligned} $	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	kNm e 4 m m MPa MPa Verific e 1 kN e00 kNm e00 kNm duction factor	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical Axis Y Z	cess tress CE FOR MEM for the i	S (EN 1993-1-1 § 6 nternal force cons ied without deduct l forces	$\begin{array}{l} \text{MT} = \\ \text{S.2):} \\ \text{idered:} \\ \text{Cl} = \\ \text{ion} \\ \text{y} = \\ \text{z} = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	kNm e 4 m m MPa MPa Verific e 1 kN e00 kNm duction factor x 1.00	rato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical Axis Y Z 0	cess tress CE FOR MEM for the i control of th	S (EN 1993-1-1 § 6 Internal force consided without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pr}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 Internal force consider the second length ℓ_0 [m] ℓ_0 [m] ℓ_0 1.00 ℓ_0 1.00	$\begin{array}{l} \text{MT} = \\ \text{S.2):} \\ \text{idered:} \\ \text{Cl} = \\ \text{ion} \\ \text{y} = \\ \text{z} = \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	e 4 m m MPa MPa Verific e 1 kN e00 kNm duction factor x 1.00 0.93	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical Axis Y Z 0 min	for the internation verifies internation verifies tinternations. CE FOR MEM for the internation of the int	S (EN 1993-1-1 § 6 Internal force consided without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pr}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 Internal force consider the second length ℓ_0 [m] ℓ_0 [m] ℓ_0 1.00 ℓ_0 1.00	$ \begin{aligned} &\text{MT} = \\ &\text{S.2):} \\ &\text{idered:} \\ &\text{C1} = \\ &\text{ion} \\ &\text{y} = \\ &\text{z} = \\ & \\ & \\ & \\ & \\ & \\ & \\ &\text{f}_{\text{R}} = \\ \end{aligned} $ $ \begin{aligned} &\text{S 6.3):} \\ &\text{S 6.3):} \\ &\text{C1} = \\ &\text{NED} = \\ &\text{My,ED} = \\ &\text{My,ED} = \\ \end{aligned} $ $ \begin{aligned} &\text{n-dimens:} \\ &\text{slenderne:} \\ &\text{\lambda^*} \\ &\text{0.11} \\ &\text{0.39} \\ &\text{0.33} \end{aligned} $	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e	e 4 m m MPa MPa Verific e 1 kN e00 kNm duction factor	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical Axis Y Z 0 min Bending/torsion	cess tress CE FOR MEM for the i loads Critical force Pcr [kN] 1.73e05 12518.61 17114.30 12518.61 Mcr [Nmm] 355.80	S (EN 1993-1-1 § 6 Internal force consided without deduct l forces $\sigma_{VM} = \sqrt{(\sigma_{pf}^2 + 3\tau_{max}^2)}$ σ_{VM}/f_d BERS (EN 1993-1-1 Internal force considered length leng	$ \begin{aligned} &\text{MT} = \\ &\text{S.2):} \\ &\text{idered:} \\ &\text{Cl} = \\ &\text{ion} \\ &\text{y} = \\ &\text{z} = \\ & \\ & \\ & \\ & \\ & \\ & \\ &\text{s.m.} = \\ & \\ & \\ &\text{S.6.3):} \\ &\text{idered:} \\ &\text{Cl} = \\ &\text{M}_{\text{Z,ED}} = \\ &\text{M}_{\text{y,ED}} = \\ &\text{M}_{\text{y,ED}} = \\ &\text{n-dimens:} \\ &\text{s.lenderns:} \\ &\text{s.lenderns:} \\ &\text{s.lenderns:} \\ &\text{s.lenderns:} \\ &\text{0.11} \\ &\text{0.39} \\ &\text{0.33} \\ &\text{0.39} \\ & \\ &\text{\lambda}^*_{\text{LT}} \\ &\text{0.78} \end{aligned} $	Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e ional Recess f	e 4 m m MPa MPa MPa Verific e 1 kN e00 kNm e00 kNm e00 kNm coo sactor X 1.00 0.93 0.95 0.93 XLT 0.92	ato
Torque moment RESISTANCE OF CRO Class of section Class 4 cross-sec Point with greate Axial+bending str Maximum tensile s Ideal stress BUCKLING RESISTAN Class of section Axial force Bending moment Table of critical Axis y z θ min	cess tress CE FOR MEM for the i loads Critical force Pcr [kN] 1.73e05 12518.61 17114.30 12518.61 Mcr [Nmm] 355.80	S (EN 1993-1-1 § 6 nternal force consided without deduct l forces $\sigma_{\text{VM}} = \sqrt{(\sigma_{\text{pf}}^2 + 3\tau_{\text{max}}^2)}$ $\sigma_{\text{VM}}/f_{\text{d}}$ BERS (EN 1993-1-1 nternal force consider length ℓ_0 [m] 1.00 1.00 1.00 ℓ_0 [mm]	$ \begin{aligned} &\text{MT} = \\ &\text{S.2):} \\ &\text{idered:} \\ &\text{C1} = \\ &\text{ion} \\ &\text{y} = \\ &\text{z} = \\ & \\ & \\ & \\ & \\ & \\ & \\ &\text{fr} = \\ & \\ &\text{S.6.3):} \\ &\text{idered:} \\ &\text{C1} = \\ &\text{M}_{\text{Z,ED}} = \\ &\text{M}_{\text{Z,ED}} = \\ &\text{M}_{\text{y,ED}} = \\ &\text{n-dimens:} \\ &\text{slenderne} \\ &\lambda^* \\ &\text{O.11} \\ &\text{O.39} \\ &\text{O.33} \\ &\text{O.39} \\ &\lambda^*_{\text{LT}} \end{aligned} $	1.24e-04 Class 0.07 0.15 -75006.37 3002.13 75006.37 0.22 Class -2.34e-01 6.04e 1.90e ional Recess f	kNm e 4 m m MPa MPa Verific e 1 kN e00 kNm e00 kNm duction factor X 1.00 0.93 0.95 0.93	ato

Design buckling resis. moment	axis y		$M_{b,y,Rd} =$	1.88e02	kNm
	axis z		$M_{z,Rd} =$	4.19e01	kNm
Interaction factors			k _{yy} =	0.60	
			$k_{yz} =$	0.37	
			k _{zy} =	0.99	
			k _{zz} =	0.61	
Buckling resistance for uniform	member	in axial	compressi	on	
$N_{Ed}/N_{b,Rd} \leq 1$			$F_{I-N} = 0$.00	(Verificato)
Buckling resistance for uniform	member	in bendi	ng and axi	al compre	ssion
$(N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yz}$	$(M_z,_{Ed}/M_z)$	z,Rd) ≤1	$F_{R-PF,y} = 0$.10	(Verificato)
$(N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz}$	$(M_z,_{Ed}/M_z)$	z,Rd) ≤1	$F_{R-PF,z} = 0$.06	(Verificato)
, ., ., ., ., ., ., ., ., ., ., .,					,

PROP. 18 - BEAM n. 44 - SECTION IN X = 1.00

: TRA	VI TRASV IRRIGD Trave	e: 44 Prop.: 18 Sez.in: 1
	M1 = 0.17	M2 = 1.90
LC 29	N = -0.23	V1 = -5.86
	V2 = 1.61	MT = 1.24e-04
	Sez. a D	oppio T
D =	0.3000 B1 = 0.1500	T1 = 0.0107 $T2 = 0.0107$
	T3 = 0.0071	B2 = 0.1500
	Area	= 5.38e-03
	I11	= 8.36e-05
	I22	= 6.04e-06

STATIC PARAMETERS OF SECITION			
Altezza totale Base inferiore Spessore flangia inferiore Spessore flangia superiore Spessore anima Base superiore	D = B1 = T1 = T2 = T3 = B2 =	0.30 0.15 0.01 0.01 7.10e-03 0.15	m m m m m
Location of elastic center of gravity	X1G,el	= 0.07	m
	X2G,el	= 0.15	m
Location of plastic center of gravity Distance center of gravity - shear center	X1G,p1	= 0.07	m
	X2G,p1	= 0.15	m
	X1CT-X1G	= 0.00	m
	X2CT-X2G	= 0.00	m
Section area Moment of inertia axis 1	A =	5.38e-03	m²
	I ₁₁ =	8.36e-05	m⁴

Polar moment respect to shear of Warping constant Radius of gyration	axis 2 axis 3 enter axis 1 axis 2	$\begin{array}{lll} I_{22} = & 6.04 e{-}06 \\ J = & 1.56 e{-}07 \\ I_p = & 8.60 e{-}05 \\ I_{\varpi} = & 1.26 e{-}07 \\ i_{11} = & 0.12 \\ i_{22} = & 0.03 \end{array}$		
Elastic section modulus	Top Lower	$W_{1 \text{ sup,el}} = 5.57e-04$ $W_{1 \text{ inf,el}} = 5.57e-04$		
Elastic section modulus	Right Left	W ₁ inf,el = 3.37e 0.5 W ₂ dx,el = 8.05e-0.5 W ₂ sx,el = 8.05e-0.5	5 m ³	
Plastic section modulus	axis 1 axis 2	$W_{1,p1} = 6.02e-04$ $W_{2,p1} = 1.24e-04$	m ³	
Shear area	axis 1 axis 2	$A_{V1,p1} = 3.21e-03$ $A_{V2,p1} = 2.05e-03$	3 m²	
BEAM'S CHARACTERISTIC:				
Length Multiplier for inflection	axis 1 axis 2 axis 3	$\begin{array}{ccc} & & & & & \\ \beta_1 & = & & 1.00 \\ \beta_2 & = & & 1.00 \\ \beta_3 & = & & 1.00 \end{array}$	m	
Attributes for the calculation	of instability			
Diagram Plan 1 Tipo 2 Plan 2 Tipo 2	Ψ 0.03 0.00	0.76 0.	61 60	Cm 0.61 0.60
MATERIAL'S CHARACTERISTIC:				
Steel type Processing Modulus of elasticity		S355 Laminata E = 206.00	GPa	
Yield strength Ultimate strength Yield strength Ultimate strength	(t < 40mm) (t < 40mm) (t > 40mm) (t > 40mm)	$f_y = 355.00$ $f_u = 510.00$ $f_y = 335.00$ $f_u = 470.00$	MPa MPa MPa MPa	
Partial safety factor for resis Partial safety factor for insta		$\gamma_{M0} = 1.05$ $\gamma_{M1} = 1.05$		
INTERNAL FORCES:				
Axial force Shear forces	direction 1	AF = -2.34e-01 V1 = -5.86e00	kN kN	
Bending moments	direction 2 direction 1	V2 = 1.61e00 M1 = 1.72e-01	kN kNm	
Torque moment	direction 2	M2 = 1.90e00 MT = 1.24e-04	kNm kNm	
RESISTANCE OF CROSS-SECTIONS (E	N 1993-1-1 § 6	.2):		
Class of section for the inter	nal force cons	idered:		
		Cl = Classe	1	
Axis with greater inertia Axis with less inertia		y-y = 1-1 $z-z = 2-2$		
Axial resistance		$N_{Rd} = 1818.95$	kN	
Design plastic shear resistance Reduction for torsion	axis y	$V_{pl,y,Rd} = 400.95$ coeff = 1.00	kN	
Design plastic shear resistance	axis z	$V_{p1,y,T,Rd} = 400.94$ $V_{p1,z,Rd} = 626.59$	kN kN	
Reduction for torsion		coeff = 1.00 $V_{pl,z,T,Rd} = 626.58$	kN	
Design resistance for bending Reduction for shear	axis y	$M_{y,Rd} = 203.57$ coeff = 1.00 $M_{y,v,Rd} = 203.57$	kNm kNm	
Design resistance for bending Reduction for shear	axis z	$M_{z,Rd} = 41.89$ $coeff = 1.00$	kNm	
		$M_{z,V,Rd} = 41.89$	kNm	
Design torsional resistance		$T_{Rd} = 2.84$	kNm	
Verification of plastic resista	nce for axial a	and bending moment		

$(N_{\text{Ed}}/N_{\text{Rd}}) \ + \ (M_{y,\text{Ed}}/M_{y,\text{Rd}}) \ + \ (M_{z,\text{Ed}}/M_{z,\text{Rd}}) \ \le \ 1$ Verification of plastic resistance for shear	$F_{R-PF} =$	0.01	Verificato
$(V_{y,Ed}/V_{y,Rd}) + (V_{z,Ed}/V_{z,Rd}) \le 1$ Verification of elastic resistance for torsion	$F_{R-V} =$	0.01	Verificato
$(T_{Ed}/T_{Rd}) \leq 1$	$F_{R-T} =$	0.00	Verificato
Verification of elastic resistance for tensile $\tau_{\rm Ed} \cdot V(3) \cdot \gamma_{\rm M0}/f_{\rm y} \leq 1$	$stress$ $F_{R-\tau} =$	0.02	Verificato

Class of section for the internal force considered:

Cl = Classe 1

Axial force Bending moment $\begin{array}{lll} N_{\text{ED}} = & -2.34 \text{e-}01 & kN \\ M_{\text{z,ED}} = & 6.04 \text{e00} & kNm \\ M_{\text{y,ED}} = & 1.90 \text{e00} & kNm \end{array}$

Table of critical loads	Table	of	critical	loads
-------------------------	-------	----	----------	-------

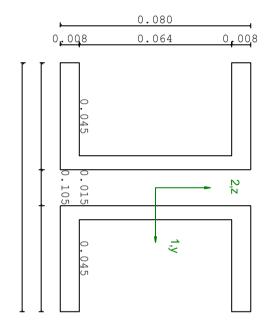
	Critical	Buckling	Non-dimensional	Reduction	
Axis	force	length	slenderness	factor	
	Pcr [kN]	ℓ_0 [m]	λ^*	χ	
У	1.73e05	1.00	0.11	1.00	
Z	12518.61	1.00	0.39	0.93	
θ	17114.30	1.00	0.33	0.95	
min	12518.61		0.39	0.93	
	M _{cr} [Nmm]	ℓ_0 [mm]	$\lambda^{\star}_{\scriptscriptstyle \mathrm{LT}}$	$\chi_{ t LT}$	
Bending/torsion	355.80	1.00	0.78	0.92	

Design buckling resistance	Min axis y axis z	$N_{b,Rd} = N_{b,y,Rd} = N_{b,z,Rd} = N_{b,$	1.69e03 kN 1.82e03 kN 1.69e03 kN
Design buckling resis. moment	axis y axis z	$M_{b,y,Rd} = M_{z,Rd} =$	1.88e02 kNm 4.19e01 kNm
Interaction factors		$k_{yy} = k_{yz} = k_{zy} = k_{zz} =$	0.60 0.37 0.99 0.61

Buckling resistance for uniform member in axial compression

 $N_{Ed}/N_{b,Rd} \le 1$ $F_{I-N} = 0.00$ (Verificato)

Buckling resistance for uniform member in bending and axial compression $% \left(1\right) =\left(1\right) \left(1\right) \left($


 $(N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yz} (M_{z,Ed}/M_{z,Rd}) \leq 1 \qquad F_{R-PF,y} = 0.10 \qquad (Verificato) \\ (N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \leq 1 \qquad F_{R-PF,z} = 0.06 \qquad (Verificato)$

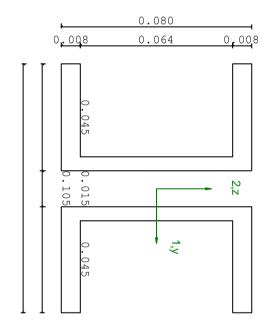
5.1.9. Verifica prop. 19

PROP. 19 - BEAM n. 142 - SECTION IN X = 0.00

) <u>.:</u>	CON	TROVENTI PIANC	Trave:	142	Prop.: 19	Sez.in:	0
		M1 = 0	.00		M2 = 0	.00	
L	28	N = 230	.36		V1 = 0	.00	
L		V2 = 0	.00		MT = 0	.00	
		Se	zione a	C chi	usa		
	D =	0.0800 B = 0	.0450 т	1 = 0).0080 T2 =	0.0060	
		Area		= 2.2	21e-03		
		I11		= 2.1	4e-06		
		I22		= 1.6	3e-06		

STATIC	PARAMETERS	OF	SECITION

Altezza totale Base Spessore ali Spessore anima		D = B = T1 = T2 =	0.000	m m m
Location of elastic center of	gravity	X _{1G} ,el	= 0.05	m
Location of plastic center of	gravity	X2G,el X1G,pl		
Distance center of gravity -	shear center	X2G,pl X1CT-X1G	=-8.25e-03	m m
		X _{2CT} -X _{2G}	= 0.00	m
Section area		A =	2.21e-03	m²
Moment of inertia	axis 1	I ₁₁ =	2.14e-06	m^4
	axis 2	I ₂₂ =	1.63e-06	m^4
	axis 3	J =	3.99e-08	m^4
Polar moment respect to shear	center	Ip =	3.91e-06	m^4
Warping constant		I _m =	2.36e-10	m^6
Radius of gyration	axis 1	i ₁₁ =	0.03	m
51	axis 2	i ₂₂ =	0.03	m
Elastic section modulus	Top		5.34e-05	m³
	Lower		5.34e-05	m³
Elastic section modulus	Right		3.10e-05	m³
	Left		3.10e-05	m³
Plastic section modulus	axis 1		6.41e-05	m³
	axis 2		5.13e-05	m³
Shear area	axis 1	$A_{V1,p1} =$	7.20e-04	m²
	axis 2	$A_{V2,p1} =$	4.32e-04	m²


BEAM'S CHARACTERI							
Length				2.83	m		
Multiplier for in	nflection	axis 1	$\beta_1 =$	1.00			
		axis 2	$\beta_2 =$	1.00			
		axis 3	$\beta_3 =$	1.00			
Attributes for th	o calculation	of ingtability					
accirbaces for ci	Diagram	υ Instability	kc		m _{LT}	Cm	-
Plan 1	Tipo 1	1.00	1.00		1.00	1.00	
Plan 2	Tipo 1	1.00	1.00		1.00	1.00	
ARREDIATIO OUADA	OMEDICATO:						_
MATERIAL'S CHARAC	TERISTIC:						
Steel type			S355				
Processing			Lamina				
Modulus of elasti	lcity		E =	206.00	GPa		
Yield strength		(t < 40mm)	fy =	355.00	MPa		
Jltimate strength	1	(t < 40mm)	fu =	510.00	MPa		
lield strength		(t > 40mm) (t > 40mm)	fy = fu =	335.00 470.00	MPa MPa		
Jltimate strength					Mra		
Partial safety fa			$\gamma_{\text{MO}} =$	1.05			
Partial safety fa	actor for inst	ability	$\gamma_{\text{Ml}} =$	1.05			
NTERNAL FORCES:							-
Axial force			AF =	2.30e02	kN		
Shear forces		direction 1	V1 =		kN		
onedi idiceb		direction 2		0.00e00	kN		
Bending moments		direction 1	M1 =		kNm		
		direction 2	M2 =		kNm		
Porque moment			MT =	0.00e00	kNm		
Warning: verifica Warning: shears a	ation performe and bending mo	d as section wi ments neglected	th conti	nuous conr	nection		_
Warning: verifica	ation performe and bending mo	d as section wi ments neglected	th conti	nuous conr Class			_
Warning: verifica Warning: shears a Class of section	ation performe and bending mo	d as section wi ments neglected rnal force cons	th conti idered: Cl = y =				_
Warning: verificate Varning: shears of Class of section Point with greate	ation performe and bending mo n for the inte	d as section wi ments neglected rnal force cons	th conti idered: Cl = y = z =	Class 7.50e-03 -0.04	e 3 m m		
Warning: verificate Varning: shears of Class of section Point with greate	ation performe and bending mon for the interest internal f	d as section wi ments neglected rnal force cons orces	th conti	Class 7.50e-03 -0.04 1.04e05	e 3 m m	o (*Avviso	_
Warning: verificate Varning: shears at Class of section Point with greate Axial+bending str	ation performe and bending mon for the interest internal f	d as section wi ments neglected rnal force cons	th conti idered: Cl = y = z =	Class 7.50e-03 -0.04 1.04e05	e 3 m m	o (*Avviso:	T
Warning: verificate Warning: shears at Class of section Point with greate Axial+bending sta	ation performe and bending mon for the interest internal forcess	d as section wi ments neglected rnal force cons orces	th conti $ \begin{matrix} \cdot \\ \cdot$	Class 7.50e-03 -0.04 1.04e05	e 3 m m	o (*Avviso:	Т;
Warning: verificate Warning: shears at Class of section Point with greate Axial+bending states trascurate)	ation performe and bending mon for the interest internal forcess	d as section wi ments neglected rnal force cons orces	th conti . idered: Cl = y = z = σ _{pf} = F _R =	Class 7.50e-03 -0.04 1.04e05 0.31	e 3 m m MPa Verificat		=
Warning: verification Warning: shears at the Class of section Point with greate Axial+bending states trascurate) BUCKLING RESISTAN Warning: verific	ation performe and bending mon for the interest internal forcess GVA ICE FOR MEMBER Cation perform	d as section wiments neglected rnal force consorces 1/fd S (EN 1993-1-1 med as section	th conti . idered: Cl = y = z = σ _{pf} = F _R =	Class 7.50e-03 -0.04 1.04e05 0.31	e 3 m m MPa Verificat		=
Warning: verificate Warning: shears at Class of section Point with greate Axial+bending sta trascurate) BUCKLING RESISTAN Warning: verific	ation performe and bending mon for the interest internal forcess ONE FOR MEMBER cation performation performa	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered.	th conti dered: $Cl = y = z = G_{pf} = F_{R} = S$	Class 7.50e-03 -0.04 1.04e05 0.31	e 3 m m MPa Verificat		=
Point with greate Axial+bending str trascurate) BUCKLING RESISTAN Warning: verificaccordance to EN Class of section	ation performe and bending mon for the interest internal forcess ONE FOR MEMBER cation performation performa	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered.	th contiing the continuous conti	Class 7.50e-03 -0.04 1.04e05 0.31	m m MPa Verificat s connection		=
Warning: verificate Varning: shears at Class of section Point with greate Axial+bending stracturate) BUCKLING RESISTAN Warning: verificate verificate Class of section Axial force	ation performe and bending mon for the interest internal forcess ONE FOR MEMBER cation performation performa	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered.	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = NED =	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02	e 3 m m MPa Verificat s connection e 3 kN		=
Warning: verification warning: shears at Class of section Point with greate Axial+bending stranscurate) BUCKLING RESISTAN Warning: verification conducted to EN Class of section	ation performe and bending mon for the interest internal forcess ONE FOR MEMBER cation performation performa	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered.	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = NED = Mz,ED =	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e	e 3 m m MPa Verificat s connection e 3 kN e00 kNm		=
Warning: verificate Varning: shears at Class of section Point with greate Axial+bending stracturate) BUCKLING RESISTAN Warning: verificate verificate Class of section Axial force	ation performe and bending mon for the interest internal forcess ONE FOR MEMBER cation performation performa	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered.	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = NED =	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e	e 3 m m MPa Verificat s connection e 3 kN		=
Warning: verificate Varning: shears at Class of section Point with greate Axial+bending stranscurate) BUCKLING RESISTAN Varning: verificate accordance to EN Class of section Axial force Bending moment	ation performe and bending mon for the interest internal freess ONE FOR MEMBER cation perform 1993-1-1 § 6. In for the interest	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons	th conti idered: Cl = y = z = Gpf = FR = \$ 6.3): with idered: Cl = NED = Mz,ED = My,ED =	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e	m m MPa Verificat s connection e 3 kN e00 kNm e00 kNm		=
Warning: verificate Varning: shears at Class of section Point with greate Axial+bending structurate) BUCKLING RESISTAN Varning: verificate accordance to EN Class of section Axial force Bending moment	ation performe and bending mon for the interest internal forces WICE FOR MEMBER Estation performent 1993-1-1 \$ 6.	d as section wiments neglected rnal force consorces () fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = NED = Mz,ED = My,ED = n-dimens	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Ree	e 3 m m MPa Verificat s connection e 3 kN e00 kNm		=
Warning: verificate Varning: shears at Class of section Point with greate Axial+bending structurate) BUCKLING RESISTAN Varning: verificate verificate accordance to EN Class of section Axial force Bending moment	ation performe and bending mon for the interest internal freess ONE FOR MEMBER cation perform 1993-1-1 § 6. In for the interest interest interest freese for the interest force in force	d as section wi ments neglected rnal force consorces (/fd S (EN 1993-1-1 med as section 4 unconsidered. rnal force consormal force consorma	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = Mz,ED = My,ED = My,ED = M-dimenseselendered	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Ree	m m MPa Verificat s connection e 3 kN e00 kNm e00 kNm		=
Warning: verificate larning: shears as a class of section or coint with greate larning structurate) WICKLING RESISTANT CLASS OF Section class of section with greate larning: verificate larning in the coordance to EN class of section class of section with the coordance larning moment class of critical data.	ntion performe and bending mon for the interest internal forces OVER FOR MEMBER Cation performent and perform	d as section wiments neglected rnal force consorces () fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons Buckling Nonlength (milength) (milength) (milength)	th contiing the continuous conti	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Ree	m m MPa Verificat s connection e 3 kN e00 kNm duction factor x		_
Warning: verificate larning: shears as a class of section with greate laxial+bending structurate) WUCKLING RESISTANT Consideration of the conduction of section with greate laxial force sending moment capable of critical capable capab	ation performe and bending mon for the interest internal freess ONE FOR MEMBER cation perform 1993-1-1 § 6. In for the interest interest interest freese for the interest force in force	d as section wi ments neglected rnal force consorces (/fd S (EN 1993-1-1 med as section 4 unconsidered. rnal force consormal force consorma	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = Mz,ED = My,ED = My,ED = M-dimenseselendered	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Ree	m m MPa Verificat s connection e 3 kN e00 kNm e00 kNm		_
Warning: verifications shears and Class of section Point with greated Axial+bending structurate) BUCKLING RESISTAN Warning: verification accordance to EN Class of section Axial force Bending moment Cable of critical Axis Y	Ation performe and bending mon a for the interest internal forces CE FOR MEMBER Cation performence and performence and performence and performence are also because of the interest and performence and	d as section wiments neglected rnal force consorces () fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons Buckling Nonlength (0 [m] 2.83	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = Mz,ED = My,ED = M-dimens. Slenderne \(\lambda^* \) 1.19	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Ree	m m MPa Verificat s connection e 3 kN e00 kNm duction factor x 0.44		_
Warning: verification of the control	ation performe and bending mon for the interest internal forces Over ICE FOR MEMBER Cation perform 1993-1-1 § 6. In for the interest interest interest internal force Per [kN] 553.41 421.25	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons Buckling Nonlength (0 [m] 2.83 2.83	th conti continuity of the continuity of the c	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Recess f	m m MPa Verificat Sconnection a Sconnection kN e00 kNm e00 kNm duction factor X 0.44 0.36		_
Jarning: verification of the control	ation performe and bending mon for the interest internal forces Over ICE FOR MEMBER Cation perform 1993-1-1 § 6. In for the interest interest interest internal force Per [kN] 553.41 421.25	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons Buckling Nonlength (0 [m] 2.83 2.83 Min	th conti idered: Cl = y = z = σ_{pf} = F_R = S 6.3): with idered: Cl = $M_{z,ED}$ = $M_{y,ED}$ = n-dimens. slendern. λ^* 1.19 1.36 $N_{b,Rd}$ =	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Recess f	m m MPa Verificat Sconnection a 3 kN e00 kNm e000 kNm duction factor X 0.44 0.36		_
Warning: verifications shears and Class of section Point with greated Axial+bending structurate) BUCKLING RESISTAN Warning: verification accordance to EN Class of section Axial force Bending moment Cable of critical Axis Y	ation performe and bending mon for the interest internal forces Over ICE FOR MEMBER Cation perform 1993-1-1 § 6. In for the interest interest interest internal force Per [kN] 553.41 421.25	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons Buckling Nonlength (0 [m] 2.83 2.83 Min axis y	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = Mz,ED = My,ED = My,ED = 1.19 1.36 Nb,Rd = Nb,Y,Rd	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Recess f	m m MPa Verificat S connection a 3 kN 000 kNm 000 kNm 000 kNm 000 kNm		=
Warning: verification of the control	ation performe and bending mon for the interest internal forces Over ICE FOR MEMBER Cation perform 1993-1-1 § 6. In for the interest interest interest internal force Per [kN] 553.41 421.25	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons Buckling Nonlength (0 [m] 2.83 2.83 Min	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = Mz,ED = My,ED = My,ED = 1.19 1.36 Nb,Rd =	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Recess f	m m MPa Verificat Sconnection a 3 kN e00 kNm e000 kNm duction factor X 0.44 0.36		_
Jarning: verification of the control	Ation performe and bending mon a for the interest internal freess OVA NCE FOR MEMBER Cation perform 1993-1-1 § 6. In for the interest interest interest internal freess Critical force Per [kN] 553.41 421.25	d as section wiments neglected rnal force consorces (/fd S (EN 1993-1-1) med as section 4 unconsidered. rnal force cons Buckling Nonlength (0 [m] 2.83 2.83 Min axis y	th conti idered: Cl = y = z = Gpf = FR = S 6.3): with idered: Cl = Mz,ED = My,ED = My,ED = 1.19 1.36 Nb,Rd = Nb,Y,Rd	Class 7.50e-03 -0.04 1.04e05 0.31 continuous Class 2.30e02 0.00e 0.00e ional Recess f = 2.71e = 3.27e = 2.71e	m m MPa Verificat S connection a 3 kN 000 kNm 000 kNm 000 kNm 000 kNm		_


```
1.00
Interaction factors
                                                                     k_{yy} =
                                                                     k<sub>yz</sub> =
                                                                                    1.00
                                                                     k<sub>zy</sub> =
                                                                                     1.00
                                                                     k_{zz} =
                                                                                     1.00
Buckling resistance for uniform member in axial compression
    N_{Ed}/N_{b,Rd} \leq 1
                                                                     F_{I-N} = 0.00
                                                                                                 (Verificato)
Buckling resistance for uniform member in bending and axial compression
    (N_{\rm Ed}/N_{\rm b,y,Rd}) + k_{\rm yy} (M_{\rm y,Ed}/M_{\rm b,y,Rd}) + k_{\rm yz} (M_{\rm z,Ed}/M_{\rm z,Rd}) \le 1 F_{\rm R-PF,y} = 0.00
                                                                                             (Verificato)
    (N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1 F_{R-PF,z} = 0.00
                                                                                                  (Verificato)
```

PROP. 19 - BEAM n. 141 - SECTION IN X = 0.00

) .:	CON	TROVENTI	PIANO	Trave:	141	Prop.:	19	Sez.in: 0	
		М	1 = 0.0	00		M2	= 0.	.00	
LC	28	N	= -225	. 32	V1 = 0.00				
		V	2 = 0.0	0.0		MT	= 0.	.00	
			Sez	ione a (C chi	usa			
	D =	0.0800	B = 0.	0450 T	1 = 0	0.0080	T2 =	0.0060	
		Are	ea	=	= 2.2	21e-03			
		I1	1	=	= 2.1	4e-06			
		I2	2	-	= 1.6	3e-06			

Base Spessore ali Spessore anima		B = T1 = T2 =	0.04 8.00e-03 6.00e-03	m m m
Location of elastic center of c	, 1	X _{1G,el} X _{2G,el} X _{1G,pl}	= 0.05 = 0.04 = -7.50e-03	m m m
Distance center of gravity - s	shear center	X _{2G} ,pl X _{1CT} -X _{1G} X _{2CT} -X _{2G}	= 0.04 = $-8.25e-03$ = 0.00	m m m
Section area Moment of inertia	axis 1 axis 2 axis 3	$A = I_{11} = I_{22} = J = J$	2.21e-03 2.14e-06 1.63e-06 3.99e-08	m ² m ⁴ m ⁴ m ⁴

axis 1

axis 2

0.08

3.91e-06

2.36e-10

0.03

0.03

m

 ${\rm m}^4$

 m^6

m

D

 $I_p =$

 $\text{I}_{\omega} \; = \;$

i₁₁ =

i₂₂ =

Polar moment respect to shear center

STATIC PARAMETERS OF SECITION

Altezza totale

Warping constant

Radius of gyration

Elastic section modulus	Top	W ₁ sup,	_{el} = 5.34e-	05 m³		
Elastic section modulus	Lower Right		el = 5.34e-			
Elastic Section modulus	Left		3.10e - 3.10			
Plastic section modulus	axis 1 axis 2	$W_{1,p1}$ $W_{2,p1}$	= 6.41e-0 = 5.13e-0			
Shear area	axis 1	Avı,pl	= 7.20e-	04 m²		
	axis 2	Av2,p1	= 4.32e-	04 m²		
BEAM'S CHARACTERISTIC:						_
Length			2.83	m		
Multiplier for inflection	axis 1	$\beta_1 =$	1.00	111		
	axis 2	$\beta_2 =$	1.00			
	axis 3	$\beta_3 =$	1.00			
Attributes for the calculation	of instability					
Diagram	Ψ	kc		$m_{ m LT}$	Cm	
Plan 1 Tipo 1	1.00	1.00)	1.00	1.00	
Plan 2 Tipo 1	1.00	1.00)	1.00	1.00	
MATERIAL'S CHARACTERISTIC:						-
		-0				
Steel type		S355 Lamir	\a+a			
Processing Modulus of elasticity		E =		GPa		
Yield strength	(t < 40mm)	f _v =		MPa		
Ultimate strength	(t < 40mm)	fu =		MPa		
Yield strength	(t > 40mm)	f _y =		MPa		
Ultimate strength	(t > 40mm)	fu =	470.00	MPa		
Partial safety factor for resis	stance	$\gamma_{\text{MO}} =$	1.05			
Partial safety factor for insta	ability	γ _{м1} =	1.05			
INTERNAL FORCES:						_
Axial force			-2.25e02	kN		
Shear forces	direction 1		0.00e00	kN		
Den d'annument :	direction 2		0.00e00	kN		
Bending moments	direction 1 direction 2		0.00e00 0.00e00	kNm kNm		
Torque moment	direction 2	MT =		kNm		
101que momente			0.00000	TEIVIII		
RESISTANCE OF CROSS-SECTIONS (F	EN 1993-1-1 § 6	.2):				
Warning: verification performed	l as section wit	th cont	inuous conn	ection		
Warning: shears and bending mon				0001011		
Class of section for the inter	nal force cons					
		Cl =	Classe	e 3		
Point with greatest internal fo	rces	у =	7.50e-03	m		
		z =		m		
Axial+bending stress		σ_{pf} =	-1.02e05	MPa		
$\sigma_{ ext{ iny M}}$	/f _d	$F_R =$	0.30	Verifica	to (*Avviso:	Tau
trascurate)						
BUCKLING RESISTANCE FOR MEMBERS	E (EN 1993-1-1 S	§ 6.3):				_
Warning, worification marfa	ed as sosti	to 1 + h	continuous	connect:	- Coupli	
Warning: verification perform accordance to EN 1993-1-1 § 6.4		w T C I I	CONCINUOUS	connection	- conbiing	117
accordance to EN 1990-1-1 9 0.4	. anconstacted.					

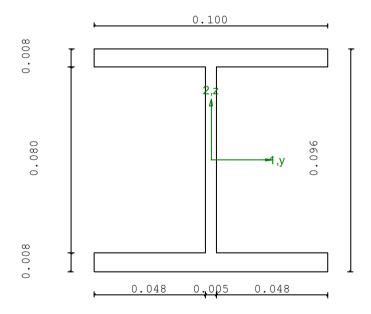
Class of section for the internal force considered:

Cl = Classe 3

Axial force $N_{ED} = -2.25 e 02 \hspace{1cm} kN$ Bending moment $M_{z,ED} = \begin{array}{ccc} 0.00 e 00 \hspace{1cm} kNm \\ M_{y,ED} = \end{array} \hspace{1cm} 0.00 e 00 \hspace{1cm} kNm$

Table of critical loads

TOOLO OF OFF	orour roudo			
	Critical	Buckling	Non-dimensional	Reduction
Axis	force	length	slenderness	factor
	Pcr [kN]	ℓ_0 [m]	λ^*	χ
У	553.41	2.83	1.19	0.44
Z	421.25	2.83	1.36	0.36



Design buckling resistance	Min axis y axis z	$N_{b,Rd} = N_{b,y,Rd} = N_{b,z,Rd} = N_{b,$	2.71e02 3.27e02 2.71e02	kN
Design buckling resis. moment	axis y axis z	$M_{b, y, Rd} = M_{z, Rd} =$	8.11e00 1.05e01	
Interaction factors		$k_{yy} = k_{yz} = k_{zy} = k_{zz} = k_{zz} =$	1.41 1.50 0.94 1.50	
Buckling resistance for uniform	member in axia	l compressi	.on	
$N_{Ed}/N_{b,Rd} \leq 1$		$F_{I-N} = 0$.83	(Verificato)
Buckling resistance for uniform	member in bend	ing and axi	al compre	ession
$(N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yy}$	$_{z} (M_{z,Ed}/M_{z,Rd}) \leq 1$	$F_{R-PF,y} = 0$.69	(Verificato)
$(N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz}$	$_{z} (M_{z,Ed}/M_{z,Rd}) \leq 1$	$F_{R-PF,z} = 0$.83	(Verificato)

5.1.10. Verifica prop. 20

PROP. 20 - BEAM n. 148 - SECTION IN X = 2.00

p.: TR	AVI TERZIARIE Trave	: 148 Prop.: 20 Sez.in: 2.
	M1 = -0.57	M2 = -5.45
LC 27	N = 4.83	V1 = -1.05
	V2 = -9.13	MT = -8.65e - 05
	Sez. a	Doppio T
D =	0.0960 B1 = 0.1000	T1 = 0.0080 T2 = 0.0080
	T3 = 0.0050	B2 = 0.1000
	Area	= 2.12e-03
	I11	= 3.49e - 06
	I22	= 1.34e-06

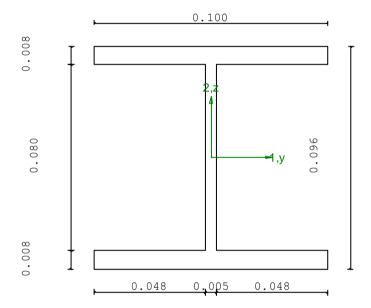
STATIC PARAMETERS OF SECITION

Altezza totale Base inferiore Spessore flangia inferiore	D B1 T1	= = =	0.10 0.10 8.00e-03	m m m
Spessore flangia superiore Spessore anima Base superiore	T2 T3 B2	= =	8.00e-03 5.00e-03 0.10	m m m
Location of elastic center of gravity	X1G,e X2G.e		= 0.05 = 0.05	m m

Location of plastic center of o	_	$x_{1G,p1} = 0.05$ $x_{2G,p1} = 0.05$ $x_{1CT}-x_{1G} = 0.00$	m m m	
biocance center of gravity	mear center	$x_{2CT} - x_{2G} = 0.00$	m	
Section area		A = 2.12e-03	m²	
Moment of inertia	axis 1	$I_{11} = 3.49e-06$		
nomene of increta	axis 2	$I_{22} = 1.34e-06$		
	axis 3	J = 3.75e-08		
Polar moment respect to shear of		$I_p = 4.65e-06$	m ⁴	
Polar moment respect to shear o	encer	*		
Warping constant		$I_{\omega} = 2.58e-09$	m ⁶	
Radius of gyration	axis 1	$i_{11} = 0.04$	m	
	axis 2	$i_{22} = 0.03$	m	
Elastic section modulus	Mon	w = 7 27c 05	m 3	
Elastic section modulus	Top	$W_{1 \text{ sup,el}} = 7.27e-05$		
Elastic section modulus	Lower	$W_{1 \text{ inf,el}} = 7.27e-05$		
Elastic section modulus	Right	$W_{2 dx,el} = 2.68e-05$		
Plastic section modulus	Left	$W_{2 \text{ sx,el}} = 2.68e - 05$	m³	
Plastic section modulus	axis 1	$W_{1,p1} = 7.84e-05$		
Chear area	axis 2	$W_{2,p1} = 4.05e-05$ $A_{V1,p1} = 1.60e-03$	m³ m²	
Shear area	axis 1	**		
	axis 2	$A_{V2,p1} = 4.40e-04$	111-	
BEAM'S CHARACTERISTIC:				
DEAT 5 CHARACTERISTIC:				
Length		2.00	m	
_	avie 1	_		
Multiplier for inflection	axis 1	$\beta_1 = 1.00$		
	axis 2	$\beta_2 = 1.00$		
	axis 3	$\beta_3 = 1.00$		
Attributes for the calculation	of instability			
Diagram	Ψ	k _c m		C_m
Plan 1 Tipo 9	0.47	0.93 0.	44	0.40
Plan 2 Tipo 9	0.57	0.95 0.	44	0.40
MATERIAL'S CHARACTERISTIC:				
0. 7 .		2255		
Steel type		S355		
Processing		Laminata		
Modulus of elasticity		E = 206.00	GPa	
Yield strength	(t < 40mm)	$f_y = 355.00$	MPa	
Ultimate strength	(t < 40mm)	$f_u = 510.00$	MPa	
Yield strength	(t > 40mm)	$f_y = 335.00$	MPa	
Ultimate strength	(t > 40mm)	$f_u = 470.00$	MPa	
Partial safety factor for resis	stance	$\gamma_{M0} = 1.05$		
Partial safety factor for insta	bility	$\gamma_{M1} = 1.05$		
INTERNAL FORCES:				
2 1 2 6			1.5-	
Axial force	31	AF = 4.83e00	kN	
Shear forces	direction 1	V1 = -1.05e00	kN	
B 11	direction 2	V2 = -9.13e00	kN	
Bending moments				
Deligating moments	direction 1	M1 = -5.71e-01	kNm	
-	direction 1 direction 2	M1 = -5.71e-01 M2 = -5.45e00	kNm kNm	
Torque moment		M1 = -5.71e-01	kNm	
-	direction 2	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05	kNm kNm	
Torque moment	direction 2	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E	direction 2	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia	direction 2	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1 y-y = 1-1	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E	direction 2	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia	direction 2	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe: y-y = 1-1 z-z = 2-2	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia	direction 2	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1 y-y = 1-1	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance	direction 2 IN 1993-1-1 § 6 In all force consi	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1 y-y = 1-1 z-z = 2-2 NRd = 716.76	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance	direction 2 IN 1993-1-1 § 6 In all force consi	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance	direction 2 IN 1993-1-1 § 6 In all force consi	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1 y-y = 1-1 z-z = 2-2 NRd = 716.76 Vp1,y,Rd = 85.89 coeff = 1.00	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance	direction 2 IN 1993-1-1 § 6 In all force consi	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion	direction 2 IN 1993-1-1 § 6 In all force considerations:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance	direction 2 IN 1993-1-1 § 6 In all force considerations:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion	direction 2 IN 1993-1-1 § 6 In all force considerations:	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe: y-y = 1-1 z-z = 2-2 NRd = 716.76 Vpl,y,Rd = 85.89 coeff = 1.00 Vpl,y,T,Rd = 85.88 Vpl,z,Rd = 312.32 coeff = 1.00	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance	direction 2 IN 1993-1-1 § 6 In all force considerations:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance Reduction for torsion	direction 2 IN 1993-1-1 § 6 Enal force consi	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance Reduction for torsion	direction 2 IN 1993-1-1 § 6 In all force considerations:	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance Reduction for torsion	direction 2 IN 1993-1-1 § 6 Enal force consi	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1 y-y = 1-1 z-z = 2-2 NRd = 716.76 Vpl,y,Rd = 85.89 coeff = 1.00 Vpl,y,T,Rd = 85.88 Vpl,z,Rd = 312.32 coeff = 1.00 Vpl,z,T,Rd = 312.31 My,Rd = 26.51 coeff = 1.00	kNm kNm kNm kNm kNm kNm kN kN kN kN kN kN kN	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance Reduction for torsion	direction 2 IN 1993-1-1 § 6 Enal force consi	$\begin{array}{llllllllllllllllllllllllllllllllllll$	kNm kNm kNm kNm kNm kNm	
Torque moment RESISTANCE OF CROSS-SECTIONS (E Class of section for the inter Axis with greater inertia Axis with less inertia Axial resistance Design plastic shear resistance Reduction for torsion Design plastic shear resistance Reduction for torsion	direction 2 IN 1993-1-1 § 6 Enal force consi	M1 = -5.71e-01 M2 = -5.45e00 MT = -8.65e-05 .2): idered: C1 = Classe 1 y-y = 1-1 z-z = 2-2 NRd = 716.76 Vpl,y,Rd = 85.89 coeff = 1.00 Vpl,y,T,Rd = 85.88 Vpl,z,Rd = 312.32 coeff = 1.00 Vpl,z,T,Rd = 312.31 My,Rd = 26.51 coeff = 1.00	kNm kNm kNm kNm kNm kNm kN kN kN kN kN kN kN	

	1 1		711114401	ournerite terri	ente Maiorie il asserona siciop
Reduction	for shear		coeff = Mz,v,Rd =	1.00 13.69	kNm
Design torsiona	al resistance		T_{Rd} =	0.91	kNm
Verification of	f plastic resist	ance for axial	and hending	moment	
$(N_{\text{Ed}}/N_{\text{Rd}})$ +	$(M_{y,Ed}/M_{y,Rd}) + (M_{y,Ed})$ f plastic resist	$_{z,Ed}/M_{z,Rd}) \leq 1$	$F_{R-PF} =$	0.25	Verificato
$(V_{y,Ed}/V_{y,Rd})$	$+(V_{z,Ed}/V_{z,Rd}) \leq 1$ f elastic resist		$F_{R-V} =$	0.11	Verificato
$(T_{Ed}/T_{Rd}) \leq Verification of$	1 f elastic resist	ance for tensil	$F_{R-T} =$ Le stress	0.00	Verificato
$ au_{\text{Ed}} \cdot extstyle ag{3} \cdot \gamma_{\text{M0}}$			$F_{R-\tau} =$	0.11	Verificato
BUCKLING RESIST	TANCE FOR MEMBER	S (EN 1993-1-1	§ 6.3):		
Class of secti	ion for the inte	rnal force cons	sidered: Cl =	Classe 1	
			01	CIUDDC I	-
Axial force			$N_{ED} = 4$.		kN
Bending moment			•	-5.71e-0	
			$M_{y,ED} =$	-5.45e00	kNm
Table of critic	cal loads				
	Critical	Buckling No	n-dimension	al Reduc	tion
Axis	force	length	slenderness	fact	tor
	Pcr [kN]	ℓ_0 [m]	λ^{\star}	χ	
У	1808.36	2.00	0.65	0.8	
Z	694.33	2.00	1.04	0.5	
θ	1991.82	2.00	0.61	0.	
min	694.33		1.04	0.	52
	M _{cr} [Nmm]	ℓ_0 [mm]	${\lambda^{\star}}_{\scriptscriptstyle \rm LT}$	ν-	_
Bending/torsion		2.00	0.72	χ ₁ 0.8	
Design buckling	g resistance	Min	$N_{b,Rd} =$	3.70e02	
		axis y	$N_{b,y,Rd} =$	5.83e02	
		axis z	$N_{b,z,Rd} =$	3.70e02	kN
Design buckling	g resis. moment	axis y	$M_{b,y,Rd} =$	2.27e01	kNm
- 3 - 9 	,	axis z	$M_{z,Rd} =$	1.37e01	
Interaction fac	ctors		k _{yy} =	0.40	
			k _{vz} =	0.24	
			k _{zv} =	1.00	
			k =	0 40	

Buckling resistance for uniform member in axial compression $% \left(1\right) =\left(1\right) \left(1\right)$


 $N_{Ed}/N_{b,Rd} \le 1$ $F_{I-N} = 0.00$ (Verificato)

Buckling resistance for uniform member in bending and axial compression

 $(N_{Ed}/N_{b,y,Rd}) + k_{yy} (M_{y,Ed}/M_{b,y,Rd}) + k_{yz} (M_{z,Ed}/M_{z,Rd}) \le 1$ $F_{R-PF,y} = 0.26$ (Verificato) $(N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1$ $F_{R-PF,z} = 0.11$ (Verificato)

PROP. 20 - BEAM n. 147 - SECTION IN X = 0.00

·p.:	TR	AVI TER	ZIARIE	Trave:	147	Prop.:	20	Sez.in:	0.
			M1 = -0).57		M2	= -	5.45	
LC	27		N = 0.	. 42		V1	= 1	.06	
			V2 = 9	.08		MT =	-5.0	9e-05	
			C	Sez. a 1	Doppi	о Т			
) =	0.0960	B1 = 0	0.1000	T1 =	0.0080	Т2	= 0.0080	١
			T3 =	0.0050	B2 =	- 0.1000			
		A	rea		= 2.	.12e-03			
		-	I 11		= 3.	49e-06			
		-	I 22		= 1.	.34e-06			

STATIC PARAMETERS OF SECITION

Altezza totale Base inferiore Spessore flangia inferiore Spessore flangia superiore Spessore anima Base superiore		D = B1 = T1 = T2 = T3 = B2 =	0.000	m m m m m
Location of elastic center of	gravity	X1G,e1	= 0.05	m
		X _{2G} ,el	= 0.05	m
Location of plastic center of	gravity	X _{1G} ,pl	= 0.05	m
		X2G,pl		m
Distance center of gravity -	shear center	$x_{1CT}-x_{1G}$		m
		X _{2CT} -X _{2G}	= 0.00	m
Section area		A =	2.12e-03	m²
Moment of inertia	axis 1	I ₁₁ =	3.49e-06	m^4
	axis 2	I ₂₂ =	1.34e-06	m^4
	axis 3	J =	3.75e-08	m^4
Polar moment respect to shear	center	Ip =	4.65e-06	m^4
Warping constant		I . =	2.58e-09	m^6
Radius of gyration	axis 1	i ₁₁ =	0.04	m
	axis 2	i ₂₂ =	0.03	m
Elastic section modulus	Top	W1 eur el =	7.27e-05	m³
	Lower		7.27e-05	m ³
Elastic section modulus	Right		2.68e-05	m³
	Left		2.68e-05	m³
Plastic section modulus	axis 1		7.84e-05	m³
	axis 2		4.05e-05	m³
Shear area	axis 1		1.60e-03	m²
	axis 2	A _{V2} , _{p1} =	4.40e-04	m²

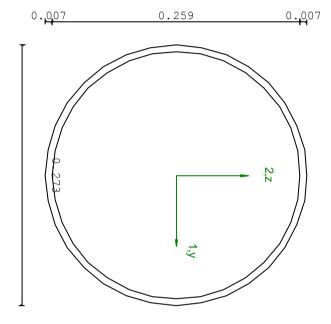
ength				2.00	m	
=	infloation	axis 1	$\beta_1 =$	1.00	111	
urcipiter for	rinflection	axis 1	•			
			$\beta_2 =$	1.00		
		axis 3	$\beta_3 =$	1.00		
tributes for	the calculation of	of instability				
	Diagram	Ψ	kc		$m_{ m LT}$	Cm
Plan 1	Tipo 9	0.43	0.93	(0.44	0.40
Plan 2	Tipo 9	0.59	0.95	(0.44	0.40
	1					
TERIAL'S CHA	RACTERISTIC:					
eel type			S355			
cocessing			Laminata			
dulus of ela	esticity		E =	206.00	GPa	
eld strength		(t < 40mm)		355.00	MPa	
_						
timate strer	=	(t < 40mm)		510.00	MPa	
eld strength		(t > 40mm)	fy =		MPa	
timate strer	ngth	(t > 40mm)	fu =	470.00	MPa	
rtial safety	factor for resist	ance	$\gamma_{\text{MO}} =$	1.05		
-	factor for instab		γ _{м1} =	1.05		
		_				
FORCE	io:					
ial force			AF = 4	.18e-01	kN	
near forces		direction 1	V1 = 1	.06e00	kN	
		direction 2	V2 = 9	.08e00	kN	
ending moment	:s	direction 1	M1 = -5		kNm	
mometri		direction 2	M2 = -5		kNm	
rque moment		ALLCCCION Z	MZ = -5 $MT = -5$		kNm	
<u>-</u>	CROSS-SECTIONS (EN	T 1993-1-1 ≤ 6 °	2):			
	01.000 0101101.0 (11		_,.			
Class of sect	ion for the interr	nal force consid		01	1	
ria with area	tor inortia		C1 =	Classe	: 1	
is with grea			<u>λ</u> -λ =	1-1		
Axis with	less inertia		z-z =	2-2		
ial resistar	nce		N _{Rd} =	716.76	kN	
.iui iobiboai			-*NG	, 10.70	1224	
sign plastic	shear resistance	axis y	$V_{pl,y,Rd} =$	85.89	kN	
	for torsion	-	coeff =			
1.044001011			V _{pl,y,T,Rd} =		kN	
			. P+, Y, +, NU		:	
sign plastic	shear resistance	axis z	$V_{pl,z,Rd} =$	312.32	kN	
	for torsion		coeff =			
1.000001011	_31 00101011		V _{pl,z,T,Rd} =		kN	
			· pr, z, r, Ku	J _ L _ J _ L		
sian recie+-	ance for bending	axis y	$M_{v,Rd} =$	26.51	kNm	
-	for shear	avio À	My,Rd - coeff =		WINTH	
reduction	TOT SHEAT			1.00	1-31	
			$M_{y,V,Rd} =$	26.51	kNm	
				46		
-	ince for bending	axis z	$M_{z,Rd} =$	13.69	kNm	
Reduction	for shear		coeff =	1.00		
			$M_{z,V,Rd} =$	13.69	kNm	
			т	0 01	lant	
sign torsion	nal resistance		$T_{Rd} =$	0.91	kNm	
rification o	of plastic resistar	nce for axial a	nd bendin	g moment		
	- (M _{y,Ed} /M _{y,Rd}) + (M _{z,E}		FR-PF =	0.25	Verificato	
	of plastic resistar		T V-LL —	0.40	v CIIIICA CO	
		ice for sileat	_	0 11	TT- 1.61	
	$) + (V_{z,Ed}/V_{z,Rd}) \leq 1$		$F_{R-V} =$	0.11	Verificato	
rification o	of elastic resistar	nce for torsion				
$(T_{Ed}/T_{Rd}) \le$	1		$F_{R-T} =$	0.00	Verificato	
	of elastic resistar	nce for tensile				
$\tau_{\rm Ed} \cdot \sqrt{(3)} \cdot \gamma_{\rm M}$			$F_{R-\tau} =$	0.10	Verificato	
== (=/ /2	. 1		v			
CKLING RESIS	STANCE FOR MEMBERS	(EN 1993-1-1 §	6.3):			
lass of coo+	ion for the intern	nal force consi-	dered.			
Lass Of Sect	.ion for the interi	ial force const	cl =	Classe	1	
			$N_{ED} = 4$.18e-01	kN	
ial force						

(Verificato)

Bending moment

-5.71e-01 $M_{z,ED} =$ kNm -5.45e00 kNm My,ED =

Table of critic	al loads				
-	Critical	Buckling	Non-dimensiona	l Reduc	tion
Axis	force	length	slenderness	fact	or
	Pcr [kN]	ℓ_0 [m]	λ^*	χ	
У	1808.36	2.00	0.65	0.8	31
Z	694.33	2.00	1.04	0.5	52
θ	1991.82	2.00	0.61	0.7	18
min	694.33		1.04	0.5	52
	Mcr [Nmm]	ℓ_0 [mm]	$\lambda^{\star}{}_{\mathtt{LT}}$	χ_{L}	г
Bending/torsion	53.18	2.00	0.72	0.8	36
Design buckling	resistance	Min	$N_{b,Rd} =$		
		axis y	$N_{b,y,Rd} =$		
		axis z	$N_{b,z,Rd} =$	3.70e02	kN
Design buckling	resis. moment	axis y	$M_b, y, Rd =$	2.27e01	kNm
		axis z	$M_{z,Rd} =$	1.37e01	kNm
Interaction fac	tors		k _{vv} =	0 40	
Interaction rac	COID		k _{vz} =		
			k _{zv} =	1.00	
			k _{zz} =	0.40	
			222	0.10	
Buckling resist	ance for uniform	m member in	axial compressi	on	
$N_{Ed}/N_{b,Rd} \leq 1$			$F_{I-N} = 0$.00	(Verificato)
Buckling resist	ance for uniform	m member in	bending and axi	al compre	ession
$(N_{Ed}/N_{b,v,Rd}) + k$	$_{VV} (M_{V,Ed}/M_{b,V,Rd}) + k$	(Mz,Ed/Mz,Rd)	≤ 1 $F_{R-PF, V} = 0$.26	(Verificato)
			, , ,		


 $(N_{Ed}/N_{b,z,Rd}) + k_{zy} (M_{y,Ed}/M_{b,y,Rd}) + k_{zz} (M_{z,Ed}/M_{z,Rd}) \le 1$ $F_{R-PF,z} = 0.11$

5.1.11. Verifica prop. 21

PROP. 21 - BEAM n. 98 - SECTION IN X = 1.10

Grp.:	: Traverse	Trave:	98	Prop.:	21	Sez.in:	1.10	
	M1 =	90.97			M2	= 21.44		
LC 28	N =	0.10			V1	= 65.67		
	V2 =	15.24			MT	= 0.02		
	Sezione Circolare cava							
	D	= 0.273	0 T	1 = 0.0	071			
	Area		=	5.93e-	-03			
	I11		=	5.25e-	-05			
	I22		=	5.25e-	-05			

STATIC PAR	AMETERS OF	SECITION
------------	------------	----------

Diametro		D =	0.27	m
Spessore		T1 =	7.10e-03	m
			0 14	
Location of elastic center of g	ravity	X1G,el	= 0.14	m
		X _{2G} ,el	= 0.14	m
Location of plastic center of g	ravity	$X_{1G,pl}$		m
		X2G,pl		m
Distance center of gravity - s	hear center	$x_{1CT}-x_{1G}$		m
		$x_{2CT}-x_{2G}$	= 0.00	m
		-	F 00 00	2
Section area			5.93e-03	m²
Moment of inertia	axis 1		5.25e-05	m ⁴
	axis 2		5.25e-05	m ⁴
	axis 3	J =	1.05e-04	m^4
Polar moment respect to shear of	enter	$I_p =$	1.05e-04	m^4
Warping constant		Ιω =	0.00	m^6
Radius of gyration	axis 1	i ₁₁ =	0.09	m
	axis 2	i ₂₂ =	0.09	m
Elastic section modulus	Top	$W_{1 \text{ sup,el}} =$	3.84e-04	m³
	Lower	$W_{1 \text{ inf,el}} =$	3.84e-04	m³
Elastic section modulus	Right	$W_{2 dx,el} =$	3.84e-04	m³
	Left	$W_{2 \text{ sx,el}} =$	3.84e-04	m³
Plastic section modulus	axis 1	$W_{1,pl} =$	5.02e-04	m³
	axis 2		5.02e-04	m³
Shear area	axis 1		3.78e-03	m²
	axis 2		3.78e-03	m ²
	31110 L	vz,pr	3.700 00	111

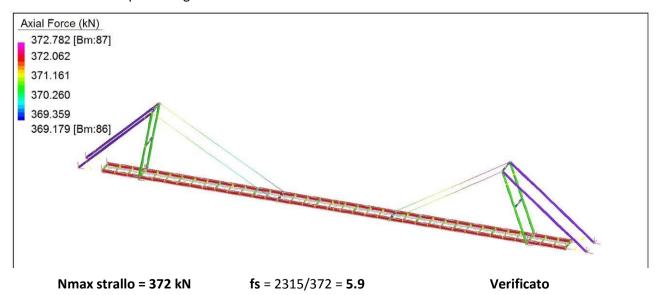
Length Multiplier for	inflection	axis 1	$\beta_1 = \beta_2 =$	1.10 2.55 2.55	m	
		axis 3	$\beta_3 =$	1.00		
ttributes for	the calculation (of instability				
.cciibacco ioi	Diagram	Ψ	kc		m _{LT}	Cm
Plan 1	Tipo 2	0.21	0.79		0.68	0.68
Plan 2	Tipo 2	0.22	0.79		0.69	0.69
ATERIAL'S CHA	RACTERISTIC:					
teel type			S355 Lamina	+ ~		
nocessing Modulus of ela	sticity		E =	206.00	GPa	
ield strength		(t < 40mm)	f _v =	355.00	MPa	
Iltimate stren		(t < 40mm)		510.00		
ield strength	-	(t > 40mm)	f _y =	335.00	MPa	
Iltimate stren		(t > 40mm)	fu =	470.00	MPa	
	factor for resist		γ _{м0} =	1.05	III a	
=	factor for instal		$\gamma_{M0} =$ $\gamma_{M1} =$	1.05		
			1 FILE	1.00		
NTERNAL FORCE	S:					
xial force			AF =	9.60e-02	kN	
hear forces		direction 1		6.57e01	kN	
		direction 2	V2 =		kN	
ending moment	S	direction 1	M1 =		kNm	
		direction 2	M2 =	2.14e01	kNm	
orque moment			MT =	2.30e-02	kNm	
ESISTANCE OF	CROSS-SECTIONS (EI	N 1993-1-1 § 6.	2):			
Class of sect	ion for the inter	nal force consi	dered:			
xis with grea	tor inortic		Cl = y-y =	Class	e 2	
_	less inertia		z-z =	1-1		
xial resistar	ice		N_{Rd} =	2005.24	kN	
esign plastic	shear resistance	axis y	V _{pl,y,Rd}	= 737.03	kN	
Reduction	for torsion		coeff	= 1.00		
			$V_{pl,y,T,R}$	d = 736.92	kN	
esian plastio	shear resistance	axis z	Vnl.z.Rd	= 737.03	kN	
	for torsion		-	= 1.00	•	
				d = 736.92	kN	
esian resists	nce for bending	axis y	$M_{v,Rd} =$	169.76	kNm	
_	for shear	unio à	4 .	= 1.00	VIMII	
T.C. GUCCETOII	TOT DIRECT			= 169.76	kNm	
			2			
-	nce for bending	axis z	$M_{z,Rd} =$		kNm	
Reduction	for shear			= 1.00	1-37	
			Mz,V,Rd	= 169.76	kNm	
esign torsior	al resistance		$T_{\text{Rd}} \; = \;$	153.92	kNm	
erification o	of plastic resistan	nce for axial a	nd bend	ina moment		
	$(M_y,_{Ed}/M_y,_{Rd}) + (M_z,_{Ed})$		$F_{R-PF} =$	0.55	Verificato	
	of plastic resistan		- N-EE	0.55		
	$+(V_{z,Ed}/V_{z,Rd}) \leq 1$		$F_{R-V} =$	0.11	Verificato	
	f elastic resistar	nce for torsion				
$(T_{Ed}/T_{Rd}) \leq$	1		$F_{R-T} =$	0.00	Verificato	
	f elastic resistar	nce for tensile				
$\tau_{\text{Ed}} \cdot \sqrt{(3)} \cdot \gamma_{\text{M}}$			$F_{R^-\tau} \; = \;$	0.12	Verificato	
		/ 1000 1 1 -				
UCKLING RESIS	TANCE FOR MEMBERS	(EN 1993-1-1 §	6.3):			
Class of sect	ion for the inter	nal force consi		01	0 2	
			Cl =	Class	E	
xial force			N _{ED} =	9.60e-02	kN	

9.10e01 kNm

Bending moment

_			$M_{y,ED} =$	2.14e01	kNm	
Table of crit	cical loads					
Axis	Critical force	Buckling length	Non-dimensiona slenderness			
y z	P _{er} [kN] 13867.10 13867.10	2.80		χ 0.9 0.9	96	
Design buckli	ng resistance	Min axis y axis z	$N_{b,Rd} = N_{b,y,Rd} = N_{b,z,Rd} = N_{b,z,Rd} = N_{b,z,Rd}$	1.92e03	kN	
Design buckli	ng resis. moment	axis y axis z	$M_{b,y,Rd} = M_{z,Rd} =$			
Interaction f	factors		$k_{yy} = k_{yz} = k_{zy} = k_{zz} = k_{zz} = $	0.41 0.41		
-	stance for unifor	m member in	-		(Mary 15 lands)	
$(N_{\text{Ed}}/N_{\text{b,y,Rd}})$	stance for unifor $+k_{yy}(M_{y,Ed}/M_{b,y,Rd}) + \frac{1}{2}$	c_{yz} ($M_{z,Ed}/M_{z,Rd}$)	bending and axi ≤ 1 $F_{R-PF,y} = 0$	al compre	(Verificato)	
$(N_{Ed}/N_{b,z,Rd}) + k_z$	$_{y}$ (M _{y,Ed} /M _{b,y,Rd}) + k_{zz} (1	$M_{z,Ed}/M_{z,Rd}) \le 1$	F_{R-PF}	$y_{z} = 0.30$	(Verificato)	

 $M_{z,ED} =$

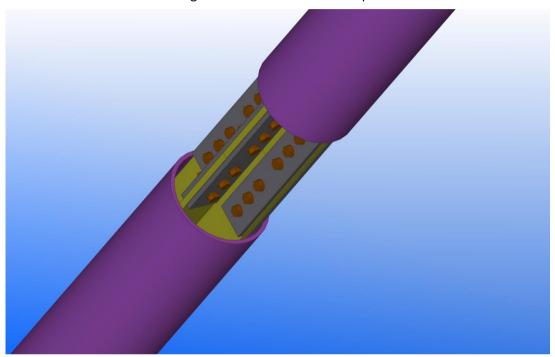

5.2. VERIFICA PORTATA DEGLI STRALLI

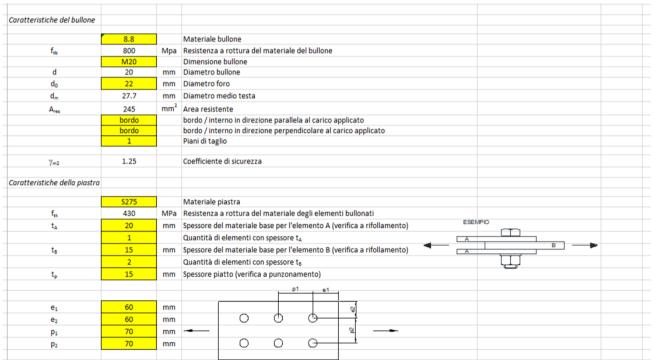
Gli stralli selezionati sono dei Ø48 in acciaio armonico con le seguenti caratteristiche:

Ø d (mm)	Sezione metallica Metallic cross section A (mm²)	Forza di rottura minima Minimum breaking force MBF (kN)	Rigidezza elastica Elastic stiffness E-A (MN)	Massa Mass m (kg/m)
32	681	1015	112	5.6
36	862	1285	142	7.1
40	1077	1605	178	8.9
44	1303	1945	215	10.7
48	1551	2315	256	12.8
52	1841	2750	304	15.2
56	2136	3190	352	17.6
60	2452	3660	405	20.2
64	2789	4165	460	23.0

La forza di rottura minima dichiarata è pari a 2315 kN

Dai calcoli si ricava quanto segue:


5.3. VERIFICA DEI NODI


In questo paragrafo, riportiamo la verifica delle giunzioni principali della struttura primaria. Ogni giunto viene analizzato nelle peggiori condizioni di carico tra SLU e SLV.

5.3.1. Verifica Giunzione a croce del tirante passivo

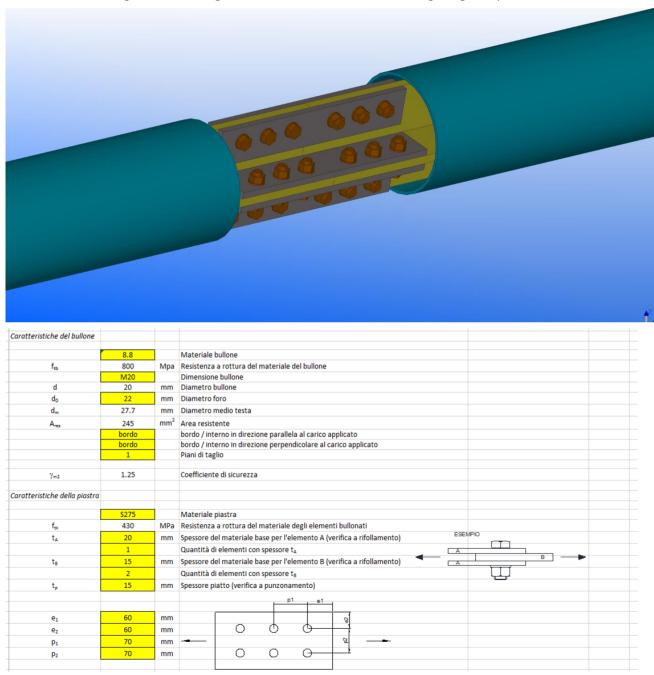
Il tirante passivo è un elemento tubolare e viene giuntato in continuità mediante un giunto a croce come rappresentato in figura con l'inserimento di 12+12 bulloni a taglio M20 8.8.

La massima forza di trazione registrata dai calcoli allo SLU è pari a 665 kN

RESISTENZA A TAGLIO					
α	0.91			α=min {e1/(3 d0) ; ftb/ft; 1}	
k k	2.5			k=min {2,8 e2/d0 - 1,7 ; 2,5}	
k*α	2.27			K-IIII (2,0 C2/00 - 1,1 , 2,3)	
F _{v,Rd}	94080	N	Resistenza a taglio del bullone (per piano di taglio)	Fv,Rd = 0,6 ftb Ares / yM2	
F _{v,Rd}	94080	N	Resistenza a taglio per 1 piano di taglio		
F _{b,Rd}	312727	N	Resistenza a rifollamento del materiale base per ciascun elemento A	Fb,Rd = k α ftk d t / γM2	
F _{b,Rd}	312727	N	Resistenza a rifollamento del materiale base per 1 elemento A		
F _{b,Rd}	234545	N	Resistenza a rifollamento del materiale base per ciascun elemento B	Fb,Rd = k α ftk d t / γM2	
F _{b,Rd}	469091	N	Resistenza a rifollamento del materiale base per 2 elementi B		
F _{v,Rd}	94080	N	Resistenza complessiva a taglio	min(Fv,Rd; Fb,Rd)	
RESISTENZA A TRAZIONE					
F _{t,Rd}	141120	N	Resistenza a trazione	Ft,Rd = 0,6 ftr Ares / yM2	
B _{p,Rd}	269420	N	Resistenza a punzonamento	Bp,Rd = 0,6 p dm tp ftk / γM2	
F _{t,Rd}	141120	N	Resistenza complessiva a trazione	min(Bp,Rd; Ft,Rd)	
SOLLECITAZIONI					
F _{v,Ed}	665000	N			
F _{t,Ed}	0	N			
N. BULLONI	12				
F _{v,Rd}	1128960	N	Resistenza complessiva a taglio		
VERIFICHE					
F _{v,Ed}	<=	F _{v,Rd}	VERIFICATO - 59%		
F _{t,Ed}	<=	F _{t,Rd}	VERIFICATO - 0%		
F _{v,Ed} / F _{v,Rd} + F _{t,Ed} / 1,4 F _{t,Rd}	0.59				

5.3.2. Verifica Giunzione a croce del traverso del portale

Il traverso del portale è un elemento tubolare e viene giuntato in mezzaria (dove il momento è quai nullo) mediante un giunto a croce come rappresentato in figura con l'inserimento di 12+12 bulloni a taglio M20 8.8.

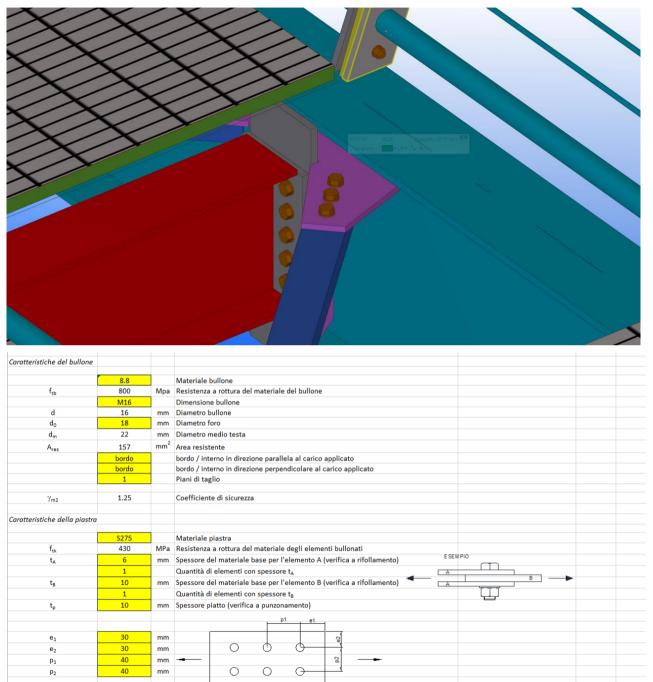

I massimi sforzi registrati dai calcoli allo SLU sono i seguenti:

Nmax = 140.6 kN

M1 = 5.3 kNm T1 = 17.2 kN

M2 = 20 kNm T2 = 65 kN

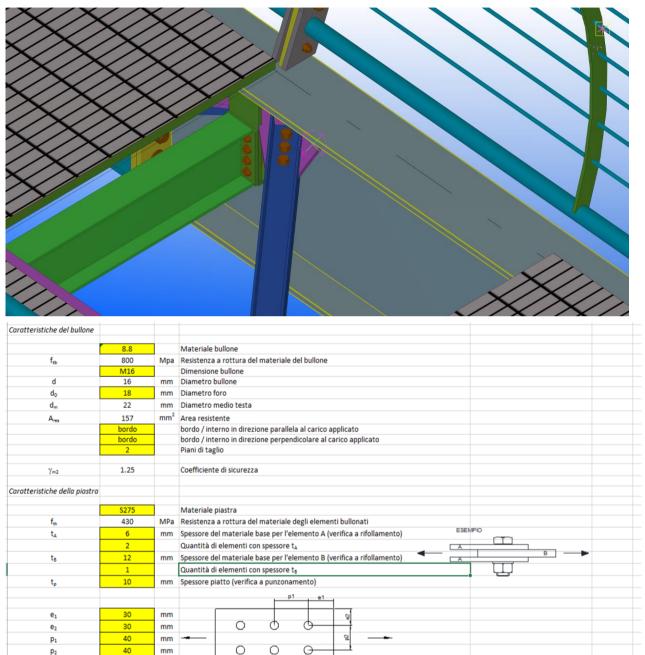
Combinando gli effetti delle sollecitazioni e suddividendo i momenti per l'interasse delle file di bulloni si ottiene una forza tagliante sulla singola fila costituita da 3 bulloni un taglio agente pari a 160 kN.


RESISTENZA A TAGLIO					
α	0.91			α=min {e1/(3 d0) ; ftb/ft; 1}	
k	2.5			k=min {2,8 e2/d0 - 1,7 ; 2,5}	
k*α	2.27				
F _{v,Rd}	94080	N	Resistenza a taglio del bullone (per piano di taglio)	Fv,Rd = 0,6 ftb Ares / yM2	
F _{v,Rd}	94080	N	Resistenza a taglio per 1 piano di taglio		
F _{b,Rd}	312727	N	Resistenza a rifollamento del materiale base per ciascun elemento A	Fb,Rd = k α ftk d t / γM2	
F _{b,Rd}	312727	N	Resistenza a rifollamento del materiale base per 1 elemento A		1
F _{b,Rd}	234545	N	Resistenza a rifollamento del materiale base per ciascun elemento B	Fb,Rd = k α ftk d t / γM2	+
F _{b,Rd}	469091	N	Resistenza a rifollamento del materiale base per 2 elementi B		1
F _{v,Rd}	94080	N	Resistenza complessiva a taglio	min(Fv,Rd; Fb,Rd)	
RESISTENZA A TRAZIONE					
F _{t,Rd}	141120	N	Resistenza a trazione	Ft,Rd = 0,6 ftr Ares / yM2	
$B_{p,Rd}$	269420	N	Resistenza a punzonamento	Bp,Rd = 0,6 p dm tp ftk / γM2	
F _{t,Rd}	141120	N	Resistenza complessiva a trazione	min(Bp,Rd; Ft,Rd)	
OLLECITAZIONI					
F _{v,Ed}	160000	N			
$F_{t,Ed}$	0	N			
i. BULLONI	3				
F _{v,Rd}	282240	N	Resistenza complessiva a taglio		
ERIFICHE					
F _{v,Ed}	<=	F _{v,Rd}	VERIFICATO - 57%		
F _{t,Ed}	<=	F _{t,Rd}	VERIFICATO - 0%		
v,Ed / F _{v,Rd} + F _{t,Ed} / 1,4 F _{t,Rd}	0.57				
$F_{v,Ed} / F_{v,Rd} + F_{t,Ed} / 1,4 F_{t,Rd}$	<=	1	VERIFICATO - 57%		

5.3.3. Verifica giunzione controvento singolo

Il controvento singolo è costituito da un UPN80 e viene giuntato alla struttura principale tramite una piastra da 10mm e 3 bulloni M16 8.8 disposti in fila longitudinalmente al controvento.

Il massimo sforzo assiale calcolato nell'elemento è pari a 115 kN.


0.56			α=min {e1/(3 d0) : ftb/ft: 1}	
2.5			k=min {2,8 e2/d0 - 1,7 ; 2,5}	
1.39				
60288	N	Resistenza a taglio del bullone (per piano di taglio)	Fv,Rd = 0,6 ftb Ares / yM2	
60288	N	Resistenza a taglio per 1 piano di taglio		
45867	N	Resistenza a rifollamento del materiale base per ciascun elemento A	Fb,Rd = k α ftk d t / γM2	
45867	N	Resistenza a rifollamento del materiale base per 1 elemento A		
76444	N	Resistenza a rifollamento del materiale base per ciascun elemento B	Fb,Rd = k α ftk d t / γM2	
76444	N	Resistenza a rifollamento del materiale base per 1 elementi B		
45867	N	Resistenza complessiva a taglio	min(Fv,Rd; Fb,Rd)	
90432	N	Resistenza a trazione	Ft,Rd = 0,6 ftr Ares / γM2	
142653	N	Resistenza a punzonamento	Bp,Rd = 0,6 p dm tp ftk / γ M2	
90432	N	Resistenza complessiva a trazione	min(Bp,Rd; Ft,Rd)	
115000	N			
0	N			
3				
137600	N	Resistenza complessiva a taglio		
<=	F _{v,Rd}	VERIFICATO - 84%		
<=	F _{t,Rd}	VERIFICATO - 0%		
0.84				
	1.39 60288 60288 45867 45867 76444 76444 45867 90432 115000 0 3 137600	2.5 1.39 60288 N 60288 N 60288 N 45867 N 45867 N 76444 N 76444 N 45867 N 90432 N 142653 N 90432 N 115000 N 0 N 3 137600 N	2.5 1.39 60288 N Resistenza a taglio del bullone (per piano di taglio) 60288 N Resistenza a taglio per 1 piano di taglio 45867 N Resistenza a rifollamento del materiale base per ciascun elemento A 45867 N Resistenza a rifollamento del materiale base per ciascun elemento A 76444 N Resistenza a rifollamento del materiale base per ciascun elemento B 76444 N Resistenza a rifollamento del materiale base per 1 elementi B 45867 N Resistenza a rifollamento del materiale base per 1 elementi B 45867 N Resistenza complessiva a taglio 90432 N Resistenza a trazione 142653 N Resistenza a punzonamento 90432 N Resistenza a punzonamento 115000 N 0 N 0 N 0 VERIFICATO - 8496 VERIFICATO - 096	2.5 1.39 Resistenza a taglio del bullone (per piano di taglio) Fy,Rd = 0,6 ftb Ares / yM2

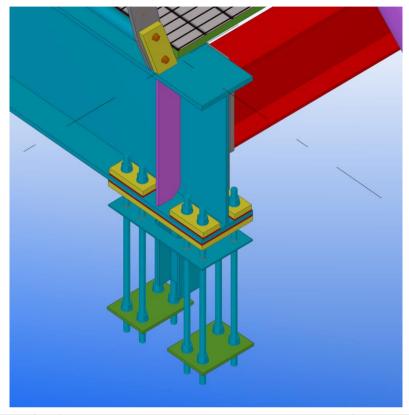
5.3.4. Verifica giunzione controvento doppio

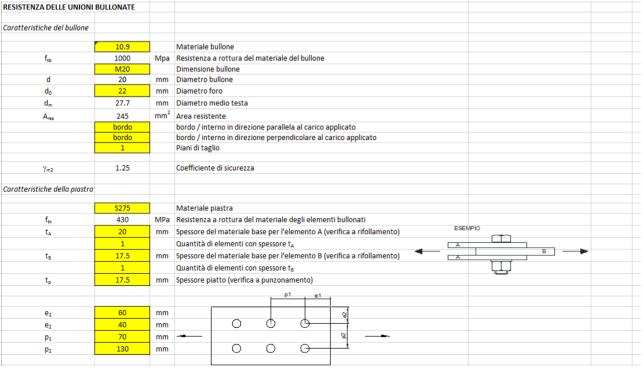
Il controvento doppio è costituito da 2 UPN80 e viene giuntato alla struttura principale tramite una piastra da 10mm e 3 bulloni M16 8.8 disposti in fila longitudinalmente al controvento.

Il massimo sforzo assiale calcolato nell'elemento è pari a 230 kN.

RESISTENZA A TAGLIO					
α	0.56			n min (n1//2 d0) - 64-/6- 13	
k k	2.5			α=min {e1/(3 d0) ; ftb/ft; 1} k=min {2,8 e2/d0 – 1,7 ; 2,5}	
k*α	1.39			K-IIIII {2,6 E2/UU - 1,7 , 2,3}	
$F_{v,Rd}$	60288	N	Resistenza a taglio del bullone (per piano di taglio)	Fv,Rd = 0,6 ftb Ares / yM2	
F _{v,Rd}	120576	N	Resistenza a taglio per 2 piani di taglio		
F _{b.Rd}	45867	N	Resistenza a rifollamento del materiale base per ciascun elemento A	Fb,Rd = k α ftk d t / γM2	
F _{b,Rd}	91733	N	Resistenza a rifollamento del materiale base per 2 elementi A		
F _{b.Rd}	91733	N	Resistenza a rifollamento del materiale base per ciascun elemento B	Fb,Rd = k α ftk d t / γM2	
F _{b,Rd}	91733	N	Resistenza a rifollamento del materiale base per 1 elementi B		
F _{v,Rd}	91733	N	Resistenza complessiva a taglio	min(Fv,Rd; Fb,Rd)	
RESISTENZA A TRAZIONE					
F _{t,Rd}	90432	N	Resistenza a trazione	Ft,Rd = 0,6 ftr Ares / yM2	
$B_{p,Rd}$	142653	N	Resistenza a punzonamento	Bp,Rd = 0,6 p dm tp ftk / γM2	
F _{t,Rd}	90432	N	Resistenza complessiva a trazione	min(Bp,Rd; Ft,Rd)	
SOLLECITAZIONI					
$F_{v,Ed}$	230000	N			
$F_{t,Ed}$	0	N			
N. BULLONI	3				
F _{v,Rd}	275200	N	Resistenza complessiva a taglio		
VERIFICHE					
F _{v,Ed}	<=	F _{v,Rd}	VERIFICATO - 84%		
$F_{t,Ed}$	<=	F _{t,Rd}	VERIFICATO - 0%		
F _{v,Ed} / F _{v,Rd} + F _{t,Ed} / 1,4 F _{t,Rd}	0.84				
F _{v.Ed} / F _{v.Rd} + F _{t.Ed} / 1,4 F _{t.Rd}	<=	1	VERIFICATO - 84%		

5.3.5. Verifica appoggio dell'impalcato con taglio longitudinale


L'appoggio fisso è assicurato al calcestruzzo mediante 8 barre M20 10.9 annegate nel calcestruzzo.

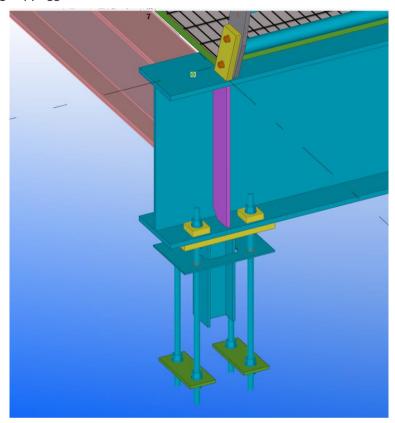

Le massime forze registrate nell'analisi sono le seguenti:

Nmax = 53 kN (trazione verso l'alto)

Tmax combinato = 350 kN

La verifica viene condotta lato trave. Per la verifica delle barre nel calcestruzzo verranno verificate a parte nel capitolo relativo gli appoggi.

RESISTENZA A TAGLIO				
α	0.91			α=min {e1/(3 d0) ; ftb/ft; 1}
k k	2.5			k=min {2,8 e2/d0 - 1,7 ; 2,5}
k*α	2.27			K-IIIII [2,0 C2,00 - 1,7 , 2,3]
F _{v.Rd}	98000	N	Resistenza a taglio del bullone (per piano di taglio)	Fv,Rd = 0,5 ftb Ares / yM2
F _{v,Rd}	98000	N	Resistenza a taglio per 1 piano di taglio	
F _{b.Rd}	312727	N	Resistenza a rifollamento del materiale base per ciascun elemento A	Fb,Rd = k α ftk d t / γM2
F _{b,Rd}	312727	N	Resistenza a rifollamento del materiale base per 1 elemento A	, , , , , ,
FbRd	273636	N	Resistenza a rifollamento del materiale base per ciascun elemento B	Fb,Rd = k α ftk d t / γM2
F _{b,Rd}	273636	N	Resistenza a rifollamento del materiale base per 1 elementi B	
F _{v,Rd}	98000	N	Resistenza complessiva a taglio	min(Fv,Rd; Fb,Rd)
RESISTENZA A TRAZIONE				
RESISTENZA A TRAZIONE				
F _{t,Rd}	176400	N	Resistenza a trazione	Ft,Rd = 0,6 ftr Ares / γM2
B _{p,Rd}	314324	N	Resistenza a punzonamento	Bp,Rd = 0,6 p dm tp ftk / γM2
F _{t,Rd}	176400	N	Resistenza complessiva a trazione	min(Bp,Rd; Ft,Rd)
SOLLECITAZIONI				
F _{v,Ed}	350000	N		
F _{t,Ed}	54000	N		
N. BULLONI	8			
F _{v,Rd}	784000	N	Resistenza complessiva a taglio	
VERIFICHE				
F _{v,Ed}	<=	F _{v,Rd}	VERIFICATO - 45%	
F _{t,Ed}	<=	F _{t,Rd}	VERIFICATO - 31%	
F _{v,Ed} / F _{v,Rd} + F _{t,Ed} / 1,4 F _{t,Rd}	0.67	- you		
	0.07			
F _{v,Ed} / F _{v,Rd} + F _{t,Ed} / 1,4 F _{t,Rd}	<=	1	VERIFICATO - 67%	

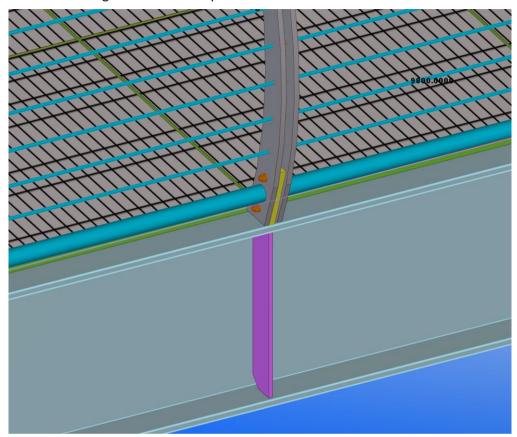

5.3.6. Verifica appoggio dell'impalcato con taglio trasversale

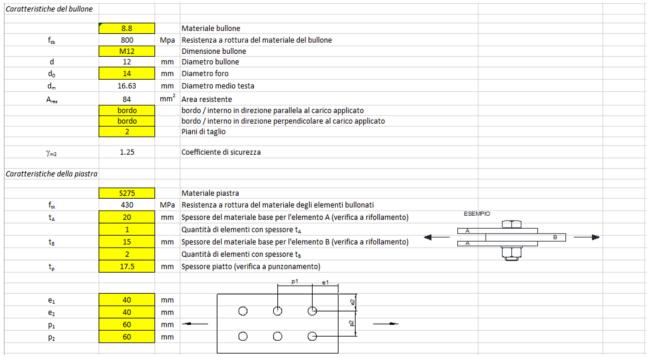
L'appoggio è assicurato al calcestruzzo mediante 4 barre M24 10.9 annegate nel calcestruzzo.

Le massime forze registrate nell'analisi sono le seguenti:

Tmax = 295 kN

La verifica viene condotta lato trave. Per la verifica delle barre nel calcestruzzo verranno verificate a parte nel capitolo relativo gli appoggi.


RESISTENZA A TAGLIO				
	0.77			(-4//2 d0)
α. k	2.5	-		α=min {e1/(3 d0) ; ftb/ft; 1}
κ k*α		-		k=min {2,8 e2/d0 – 1,7 ; 2,5}
κ*α	1.92	+		
F _{v,Rd}	141200	N	Resistenza a taglio del bullone (per piano di taglio)	Fv,Rd = 0,5 ftb Ares / yM2
F _{v,Rd}	141200	N	Resistenza a taglio per 1 piano di taglio	
F _{b.Rd}	317538	N	Resistenza a rifollamento del materiale base per ciascun elemento A	Fb,Rd = k α ftk d t / γM2
F _{b,Rd}	317538	N	Resistenza a rifollamento del materiale base per 1 elemento A	
F _{b.Rd}	277846	N	Resistenza a rifollamento del materiale base per ciascun elemento B	Fb,Rd = k α ftk d t / γM2
F _{b,Rd}	277846	N	Resistenza a rifollamento del materiale base per 1 elementi B	
-	141200	٠	Desistance consultantian a traffic	
F _{v,Rd}	141200	N	Resistenza complessiva a taglio	min(Fv,Rd; Fb,Rd)
RESISTENZA A TRAZIONE				
F _{tRd}	254160	N	Resistenza a trazione	Ft,Rd = 0,6 ftr Ares / yM2
B _{p,Rd}	377302	N	Resistenza a punzonamento	Bp,Rd = 0,6 p dm tp ftk / γM2
F _{t,Rd}	254160	N	Resistenza complessiva a trazione	min(Bp,Rd; Ft,Rd)
SOLLECITAZIONI				
F _{v,Ed}	295000	N		
F _{t,Ed}	55000	N		
N. BULLONI	4			
F _{v,Rd}	564800	N	Resistenza complessiva a taglio	
VERIFICHE				
F _{v,Ed}	<=	F _{v,Rd}	VERIFICATO - 52%	
F _{t,Ed}	<=	F _{t,Rd}	VERIFICATO - 22%	
F _{v,Ed} / F _{v,Rd} + F _{t,Ed} / 1,4 F _{t,Rd}	0.68			
F _{v.Ed} / F _{v.Rd} + F _{t.Ed} / 1,4 F _{t.Rd}	<=	1	VERIFICATO - 68%	



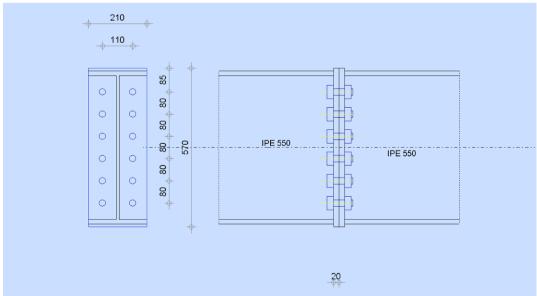
5.3.7. Verifica giunzione del parapetto

Il parapetto è costituito da due lame sp.15mm bullonate su un piatto sp.20mm con 2M12 8.8 ad interasse 120mm.

Data la spinta di normativa pari a 1.5 kN/m a 1.1m da piano calpestabile e l'interasse dei montanti pari a 2.0m si ottiene una forza tagliante sui bulloni pari a 41.25 kN.

RESISTENZA A TAGLIO					
α	0.95			α=min {e1/(3 d0) ; ftb/ft; 1}	
k	2.5			k=min {2,8 e2/d0 - 1,7 ; 2,5}	
k*α	2.38			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
F _{v,Rd}	32256	N	Resistenza a taglio del bullone (per piano di taglio)	Fv,Rd = 0,6 ftb Ares / yM2	
F _{v,Rd}	64512	N	Resistenza a taglio per 2 piani di taglio		
F _{b,Rd}	196571	N	Resistenza a rifollamento del materiale base per ciascun elemento A	Fb,Rd = k α ftk d t / γM2	
F _{b,Rd}	196571	N	Resistenza a rifollamento del materiale base per 1 elemento A		
F _{b,Rd}	147429	N	Resistenza a rifollamento del materiale base per ciascun elemento B	Fb,Rd = k α ftk d t / γM2	
F _{b,Rd}	294857	N	Resistenza a rifollamento del materiale base per 2 elementi B		
F _{v,Rd}	64512	N	Resistenza complessiva a taglio	min(Fv,Rd; Fb,Rd)	
RESISTENZA A TRAZIONE					
F _{t,Rd}	48384	N	Resistenza a trazione	Ft,Rd = 0,6 ftr Ares / yM2	
B _{p,Rd}	188708	N	Resistenza a punzonamento	Bp,Rd = 0,6 p dm tp ftk / γ M2	
F _{t,Rd}	48384	N	Resistenza complessiva a trazione	min(Bp,Rd; Ft,Rd)	
SOLLECITAZIONI					
F _{v,Ed}	41250	N			
F _{t,Ed}	0	N			
I. BULLONI	1				
F _{v,Rd}	64512	N	Resistenza complessiva a taglio		
/ERIFICHE					
F _{v,Ed}	<=	F _{v,Rd}	VERIFICATO - 64%		
-		-	VEDIFICATO, OV		
F _{t,Ed}	<=	F _{t,Rd}	VERIFICATO - 0%		
F _{v,Ed} / F _{v,Rd} + F _{t,Ed} / 1,4 F _{t,Rd}	0.64				
F _{v.Ed} / F _{v.Rd} + F _{t.Ed} / 1,4 F _{t.Rd}					

5.3.8. Verifica giunto di continuità IPE550 – Flangiato


La IPE550 è suddivisa in 7 tronchi. Le giunzioni sono di 2 tipi: con flangia di testa e 6+6 M24 10.9 e con giunto-coprigiunto. Tutte le giunzioni sono state localizzate nei punti di azzeramento dei momenti nella maggior parte delle combinazioni di carico. Per questioni di montaggoio le giunzioni sono tute flangiate tranne quella del tronco centrale in modo da consentire il completamento della trave con i necessari margini di tolleranza per la posa.

LA giunzione flangiata è sottoposta alle seguenti sollecitazioni estreme:

- Caso1. M = 240 kNm T = 90 kN N = -377 kN

- Caso2. M = 240 kNm T = 90 kN N = 600 kN

CASO 1

Autodesk Robot Structural Analysis Professional 2018 Coefficiente Calcolo del giunto incastrato Trave - Trave EN 1993-1-8:2005/AC:2009 0,86 Generale N. giunto: 5 Trave - trave Nome del giunto Geometria Lato sinistro Trave Profilato: **IPE 550** -180,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave b_{fbl} = 210 [mm] Larghezza della sezione della trave t_{wbl} = 11 [mm] Spessore dell'anima della sezione della trave t_{fbl} = 17 [mm] Spessore dell'ala della sezione della trave r_{bl} = 24 [mm] Raggio di raccordo della sezione della trave A_{bl} = 134,00 [cm²] Area della sezione della trave $I_{xbl} =$ 67120,00 [cm⁴] Momento di inerzia della sezione della trave Materiale: S 275 275,00 [MPa] Resistenza f_{vh} = Lato destro Trave Profilato: IPE 550 0,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave h_{br} = 210 [mm] Larghezza della sezione della trave $b_{fbr} =$ 11 [mm] Spessore dell'anima della sezione della trave twhr = 17 [mm] Spessore dell'ala della sezione della trave tfbr = 24 [mm] Raggio di raccordo della sezione della trave $r_{br} =$ 134,00 [cm²] Area della sezione della trave $A_{hr} =$ 67120,00 Momento di inerzia della sezione della trave [cm4] I_{vbr} = Materiale: S 275 275,00 [MPa] Resistenza $f_{vb} =$ Bulloni Il piano di taglio attraversa la parte NON FILETTATA del bullone. d = 24 [mm] Diametro del bullone Classe = 10.9 Classe del bullone 254,16 [kN] Resistenza del bullone alla trazione $F_{tRd} =$ 2 Numero di colonne dei bulloni n_h = 6 Numero di file di bulloni n_v = 85 Distanza del primo bullone dal bordo superiore della lamiera estrema h1 = [mm] Distanza orizzontale e_i = 110 [mm] Distanza verticale p_i = 80;80;80;80;80 [mm] Lamiera 570 [mm] Altezza della lamiera h_{pr} = Larghezza della lamiera b_{pr} = 210 [mm] Spessore della lamiera t_{pr} = 20 [mm] Materiale: 275,00 [MPa] Resistenza $f_{vpr} =$ Saldature in angolo esterno 10 Saldatura dell'anima a_w = [mm] 10 Saldatura dell'ala a_f = [mm] Coefficienti di materiale 1,00 Coefficiente di sicurezza parziale [2.2] $g_{M0} =$ 1.00 Coefficiente di sicurezza parziale [2.2] $g_{M1} =$ 1,25 Coefficiente di sicurezza parziale [2.2] $g_{M2} =$

Stato limite ultimo (SLU)

g_{M3} =

Carichi

Condizione Calcolo manuale.

1,25

Coefficiente di sicurezza parziale

[2.2]

 $\begin{array}{lll} M_{b1,Ed} = & 240,00 & [kN^*m] & \text{Momento flettente nella trave destra} \\ V_{b1,Ed} = & 90,00 & [kN] & \text{Azione di taglio nella trave destra} \\ N_{b1,Ed} = & 600,00 & [kN] & \text{Azione assiale nella trave destra} \\ \end{array}$

Risultati

Resistenze della trave

TRAZIONE

A_b = 134,00 [cm²] Area di sezione EN1993-1-1:[6.2.3]

 $N_{tb,Rd} = A_b f_{yb} / g_{M0}$

N_{tb,Rd} = 3685,00 [kN] Resistenza di calcolo della sezione alla trazione EN1993-1-1:[6.2.3]

TAGLIO

 $A_{vb} = 71,93$ [cm²] Area al taglio EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \ddot{O}3) / g_{M0}$

 $V_{\text{cb,Rd}} = 1141,97 \quad \text{[kN]} \qquad \text{Resistenza di calcolo della sezione al taglio} \qquad \text{EN1993-1-1:[6.2.6.(2)]} \\ V_{\text{b1,Ed}} / V_{\text{cb,Rd}} \leq 1,0 \qquad 0,08 < 1,00 \qquad \text{verificato} \qquad (0,08) \\ \end{cases}$

FLESSIONE - MOMENTO PLASTICO (SENZA RINFORZI)

 $W_{plb} = 2787,01$ [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / g_{M0}$

M_{b,pl,Rd} = 766,43 [kN*m] Resistenza plastica della sezione alla flessione (senza rinforzi) EN1993-1-1:[6.2.5.(2)]

FLESSIONE AL CONTATTO DELLA PIASTRA O DELL'ELEMENTO GIUNTO

 $W_{pl} = \qquad 2787,01 \quad \text{[cm}^3\text{]} \qquad \quad \text{Fattore plastico della sezione} \qquad \qquad \text{EN1993-1-1:[6.2.5]}$

 $M_{cb,Rd} = W_{pl} f_{yb} / g_{M0}$

M_{cb,Rd} = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5]

ALA ED ANIMA ALLA COMPRESSIONE

 $M_{cb,Rd} = 766,43$ [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5] $h_f = 533$ [mm] Distanza tra i centri di gravità delle ali [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F_{c,fb,Rd} = 1438,49 [kN] Resistenza dell'ala compressa e dell'anima [6.2.6.7.(1)]

Parametri geometrici del giunto

LUNGHEZZE EFFICACI E PARAMETRI - PIASTRA D'ESTREMITA

Nr	m	m _x	е	e _x	р	l _{eff,cp}	l _{eff,nc}	l _{eff,1}	l _{eff,2}	l _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	38	-	50	-	80	240	232	232	232	200	165	165	165
2	38	-	50	-	80	240	215	215	215	160	80	80	80
3	38	-	50	-	80	240	215	215	215	160	80	80	80
4	38	-	50	-	80	240	215	215	215	160	80	80	80
5	38	-	50	-	80	240	215	215	215	160	80	80	80
6	38	-	50	-	80	240	232	232	232	200	165	165	165

m – Distanza del bullone dall'anima

m_x – Distanza del bullone dall'ala della trave

e – Distanza del bullone dal bordo esteriore

e_x – Distanza del bullone dal bordo esteriore orizzontale

p – Distanza dei bulloni

 $I_{\text{eff,cp}} \quad \ -\text{Lunghezza efficace per un bullone nei meccanismi circolari}$

 $I_{\text{eff,nc}} \quad - \text{Lunghezza efficace per un bullone nei meccanismi non circolari}$

 $l_{\text{eff},1}$ — Lunghezza efficace per un bullone per il modo 1 $l_{\text{eff},2}$ — Lunghezza efficace per un bullone per il modo 2

l_{eff,cp,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi circolari l_{eff,nc,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi non circolari

 $l_{\text{eff,1,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 1 $l_{\text{eff,2,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 2

Resistenza del giunto alla trazione

 $F_{t,Rd} =$ 254,16 [kN] Resistenza del bullone alla trazione [Tabella 3.4] $B_{p,Rd} =$ 466,87 [kN] Resistenza del bullone al passaggio della testa [Tabella 3.4]

 $F_{t,fc,Rd}$ — resistenza dell'ala della colonna alla flessione $F_{t,wc,Rd}$ — resistenza dell'anima della colonna alla trazione

 $\begin{aligned} F_{t,ep,Rd} & - resistenza \ della \ lamiera \ alla \ flessione \\ F_{t,wb,Rd} & - resistenza \ dell'anima \ alla \ trazione \end{aligned}$

$$\begin{split} F_{t,fc,Rd} &= Min \left(F_{T,1,fc,Rd} \,,\, F_{T,2,fc,Rd} \,,\, F_{T,3,fc,Rd} \right) & [6.2.6.4] \,,\, [Tab.6.2] \\ F_{t,wc,Rd} &= w \, b_{eff,t,wc} \, t_{wc} \, f_{yc} \, / \, g_{M0} & [6.2.6.3.(1)] \\ F_{t,ep,Rd} &= Min \left(F_{T,1,ep,Rd} \,,\, F_{T,2,ep,Rd} \,,\, F_{T,3,ep,Rd} \right) & [6.2.6.5] \,,\, [Tab.6.2] \\ F_{t,wb,Rd} &= b_{eff,t,wb} \, t_{wb} \, f_{yb} \, / \, g_{M0} & [6.2.6.8.(1)] \end{split}$$

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

Ft2,Rd,comp - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
F _{t,wb,Rd(3)} = 656,43	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd}(4+3+2+1) - \sum_{3} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(5+4)} - \sum_4 {}^4F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_4 F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	hj	$F_{tj,Rd}$	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	431,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA TRAZIONE N_{i,Rd}

 $N_{j,Rd} = \sum F_{tj,Rd}$

N_{i,Rd} = 1785,49 [kN] Resistenza del giunto alla trazione [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,34 < 1,00 verificato (0,34)

Resistenza del giunto alla flessione

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} = 1438,49$	1438,49	Ala della trave - compressione

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

Ft2,Rd,comp - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1} F_{tj,Rd} = 1438,49 - 431,24$	1007,25	Ala della trave - compressione
$F_{t,ep,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1438,49 - 705,78$	732,71	Ala della trave - compressione
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1438,49 - 892,74$	545,74	Ala della trave - compressione
$F_{t,ep,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 1438,49 - 1123,50$	314,99	Ala della trave - compressione
$F_{t,ep,Rd(5+4)} - \sum_4 F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_4 F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{i=1}^{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4}^{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 6

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	84,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1} F_{tj,Rd} = 1438,49 - 1354,25$	84,24	Ala della trave - compressione
$F_{t,ep,Rd(6+5)} - \sum_5 F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)} - \sum_{s} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	h j	$\mathbf{F}_{tj,Rd}$	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$\mathbf{B}_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	84,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA FLESSIONE M_{j,Rd}

$M_{j,Rd} = \sum h$	ıj F _{tj,Rd}				
$M_{j,Rd} =$	456,12	[kN*m]	Resistenza del giunto alla flessione	[6.2]	
$M_{b1,Ed}$ / M	$_{j,Rd} \leq 1,0$		0,53 < 1,00	verificato	(0,53)
Verifica de	ell'interazio	ne M+N			
$M_{b1,Ed} / M$	j,Rd + Nb1,Ed /	$^{\prime}$ $N_{j,Rd} \leq 1$		[6.2	.5.1.(3)]
$M_{b1,Ed}$ / M	j,Rd + Nb1,Ed /	′ N _{j,Rd}	0,86 < 1,00	verificato	(0,86)
Resistenza	a del giunto	al taglio V _{j,Rd}	1		
a _v =	0,60		Coefficiente per il calcolo di F _{v,Rd}	[Tabella 3.4	1]
b _{Lf} =	0,99		Coefficiente di riduzione per i giunti lunghi	[3.8]	
$F_{v,Rd} =$	215,34	[kN]	Resistenza di un bullone al taglio	[Tabella 3.4	1]
$F_{t,Rd,max} =$	254,16	[kN]	Resistenza di un bullone alla trazione	[Tabella 3.4	1]

F _{b,Rd,i} F _{b,Rd,e}			istenza di un bullone interi istenza di un bullone estre	•	[Tabella 3.4] [Tabella 3.4]	
Nr	F _{tj,Rd,N}	$F_{tj,Ed,N}$	$\mathbf{F}_{tj,Rd,M}$	F _{tj,Ed,M}	$F_{tj,Ed}$	F _{vj,Rd}

Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F _{tj,Rd,M}	F _{tj,Ed,M}	F _{tj,Ed}	F _{vj,Rd}
1	431,24	144,92	431,24	226,91	371,83	205,65
2	274,54	92,26	274,54	144,46	236,71	287,42
3	186,96	62,83	186,96	98,38	161,21	333,12
4	230,75	77,54	230,75	121,42	198,96	310,27
5	230,75	77,54	230,75	121,42	198,96	310,27
6	431,24	144,92	84,24	44,33	189,24	316,15

 $\begin{array}{ll} F_{tj,Rd,N} & - \mbox{Resistenza di una fila di bulloni alla trazione pura} \\ F_{tj,Ed,N} & - \mbox{Forza in una fila di bulloni dovuta all'azione assiale} \\ F_{tj,Rd,M} & - \mbox{Resistenza di una fila di bulloni alla flessione pura} \\ F_{tj,Ed,M} & - \mbox{Forza in una fila di bulloni dovuta al momento} \\ F_{tj,Ed} & - \mbox{Forza di trazione massima in una fila di bulloni} \\ F_{vj,Rd} & - \mbox{Resistenza ridotta della fila di bulloni} \\ \end{array}$

$$\begin{split} F_{tj,Ed,N} &= N_{j,Ed} \; F_{tj,Rd,N} \; \middle / \; N_{j,Rd} \\ F_{tj,Ed,M} &= M_{j,Ed} \; F_{tj,Rd,M} \; \middle / \; M_{j,Rd} \\ F_{tj,Ed} &= F_{tj,Ed,N} \; + \; F_{tj,Ed,M} \end{split}$$

 $F_{vj,Rd} = Min \; (n_h \; F_{v,Ed} \; (1 - F_{tj,Ed} / \; (1.4 \; n_h \; F_{t,Rd,max}), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd}))$

$V_{j,Rd} = n_h$	$\sum_{1}^{n} F_{vj,Rd}$			[Tabella 3.4]
$V_{j,Rd} =$	1762,88	[kN]	Resistenza del giunto al taglio $V_{j,Rd}$	[Tabella 3.4]
$V_{b1,Ed} / V_{j,}$	_{Rd} ≤ 1,0		0,05 < 1,00	verificato (0,05)
Resistenz	a delle salo	dature		
$A_w =$	165,70	[cm ²]	Area di tutte le saldature	[4.5.3.2(2)]
$A_{wy} =$	72,18	[cm ²]	Area delle saldature orizzontali	[4.5.3.2(2)]
$A_{wz} =$	93,52	[cm ²]	Area delle saldature verticali	[4.5.3.2(2)]
$I_{wy} =$	69261,5	1 [cm ⁴]	Momento di inerzia del sistema di saldature rispe	etto all'asse oriz. [4.5.3.2(5)]
s _{^max} =t _{^ma}	x = 94,21	[MPa]	Sollecitazione normale nella saldatura	[4.5.3.2(6)]
s^=t^ =	82,89	[MPa]	Sollecitazione nella saldatura verticale	[4.5.3.2(5)]
t _{II} =	9,62	[MPa]	Sollecitazione tangenziale	[4.5.3.2(5)]
b _w =	0,85		Coefficiente di correlazione	[4.5.3.2(7)]

Rigidezza del giunto

 $L'azione\ assiale\ nella\ trave\ sorpassa\ il\ 5\%\ di\ resistenza\ N_{pl,Rd}.\ Conforme\ al\ punto\ 6.3.1.(4)\ la\ rigidezza\ del giunto\ non\ pu\`o\ essere\ calcolata.$

Il componente più debole:

ALA E ANIMA DELLA TRAVE IN COMPRESSIONE

Giunto conforme alla norma Coefficiente 0,86

CASO 2

Generale				
N. giunto:	5			
Nome del	-	ive - trave		
Geometria				
Lato sinist	ro			
Profilato:			IPE 550	
a =	-180,0	[Deg]	Angolo d'inclinazione	
h _{bl} =	550	[mm]	Altezza della sezione della trave	
b _{fbl} =	210	[mm]	Larghezza della sezione della trave	
t _{wbl} =	11	[mm]	Spessore dell'anima della sezione della trave	
t _{fbl} =	17	[mm]	Spessore dell'ala della sezione della trave	
r _{bl} =	24	[mm]	Raggio di raccordo della sezione della trave	
$A_{bl} =$	134,00	[cm ²]	Area della sezione della trave	
$I_{xbl} =$	67120,00	[cm ⁴]	Momento di inerzia della sezione della trave	
Materiale:				
f _{yb} =	275,00	[MPa]	Resistenza	
Lato destre Trave	U			
Profilato:			IPE 550	
a =	0,0	[Deg]	Angolo d'inclinazione	
h _{br} =	550	[mm]	Altezza della sezione della trave	
b _{fbr} =	210	[mm]	Larghezza della sezione della trave	
$t_{wbr} =$	11	[mm]	Spessore dell'anima della sezione della trave	
$t_{fbr} =$	17	[mm]	Spessore dell'ala della sezione della trave	
r _{br} =	24	[mm]	Raggio di raccordo della sezione della trave	
A _{br} =	134,00	[cm ²]	Area della sezione della trave	
I _{xbr} =	67120,00	[cm⁴]	Momento di inerzia della sezione della trave	
Materiale: $f_{yb} =$	S 27: 275,00	5 [MPa]	Resistenza	
Bulloni	273,00	[ivii a]	Nesisteriza	
	taglio attrav	ersa la parte N	ION FILETTATA del bullone.	
-	.4 [mr	•	etro del bullone	
Classe = 1	.0.9	Classe	e del bullone	
$F_{tRd} = 2$	54,16 [kN] Resist	enza del bullone alla trazione	
n _h = 2	!	Nume	ero di colonne dei bulloni	
n _v = 6			ero di file di bulloni	
-	35 [mr	-	nza del primo bullone dal bordo superiore della lamiera estre	ema
	rizzontale e _i			
Lamiera	erticale p _i =	80,80	;80;80;80 [mm]	
h _{pr} =	570	[mm]	Altezza della lamiera	
b _{pr} =	210	[mm]	Larghezza della lamiera	
t _{pr} =	20	[mm]	Spessore della lamiera	
Materiale:		S 275		
$f_{ypr} =$	275,00	[MPa]	Resistenza	
Saldature	in angolo es			
a _w =	10	[mm]	Saldatura dell'anima	
a _f =	10	[mm]	Saldatura dell'ala	
	ti di materia	le	0 (11)	[0.0]
g _{M0} =	1,00		Coefficiente di sicurezza parziale	[2.2]
g _{M1} = g _{M2} =	1,00 1,25		Coefficiente di sicurezza parziale Coefficiente di sicurezza parziale	[2.2] [2.2]
g _{M3} =	1,25		Coefficiente di sicurezza parziale	[2.2]
Carichi	_,		F	[]
	e ultimo (SI	LU)		
Condizione	-	-		
$M_{b1,Ed} =$	240,00	[kN*m]	Momento flettente nella trave destra	
$V_{b1,Ed} =$	90,00	[kN]	Azione di taglio nella trave destra	
$N_{b1,Ed} =$	600,00	[kN]	Azione assiale nella trave destra	
Risultati				

Resistenze della trave

TRAZIONE

A_b = 134,00 [cm²] Area di sezione EN1993-1-1:[6.2.3]

 $N_{tb,Rd} = A_b f_{yb} / g_{M0}$

N_{tb,Rd} = 3685,00 [kN] Resistenza di calcolo della sezione alla trazione EN1993-1-1:[6.2.3]

TAGLIO

 $A_{vb} = 71.93$ [cm²] Area al taglio EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \ddot{O}3) / g_{M0}$

 $V_{\text{cb,Rd}} = 1141,97$ [kN] Resistenza di calcolo della sezione al taglio EN1993-1-1:[6.2.6.(2)] $V_{\text{bl,Ed}} / V_{\text{cb,Rd}} \le 1,0$ o,08 < 1,00 verificato (0,08)

FLESSIONE - MOMENTO PLASTICO (SENZA RINFORZI)

 $W_{\text{plb}} = 2787,01 \text{ [cm}^3\text{]}$ Fattore plastico della sezione EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / g_{M0}$

M_{b,pl,Rd} = 766,43 [kN*m] Resistenza plastica della sezione alla flessione (senza rinforzi) EN1993-1-1:[6.2.5.(2)]

FLESSIONE AL CONTATTO DELLA PIASTRA O DELL'ELEMENTO GIUNTO

 N_{pl} = 2787,01 [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5]

 $M_{cb,Rd} = W_{pl} f_{yb} / g_{M0}$

M_{cb,Rd} = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5]

ALA ED ANIMA ALLA COMPRESSIONE

 $M_{cb,Rd} = 766,43$ [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5] $h_f = 533$ [mm] Distanza tra i centri di gravità delle ali [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F_{c,fb,Rd} = 1438,49 [kN] Resistenza dell'ala compressa e dell'anima [6.2.6.7.(1)]

Parametri geometrici del giunto

LUNGHEZZE EFFICACI E PARAMETRI - PIASTRA D'ESTREMITA

Nr	m	m _x	е	e _x	р	I _{eff,cp}	l _{eff,nc}	l _{eff,1}	l _{eff,2}	l _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	38	-	50	-	80	240	232	232	232	200	165	165	165
2	38	-	50	-	80	240	215	215	215	160	80	80	80
3	38	-	50	-	80	240	215	215	215	160	80	80	80
4	38	-	50	-	80	240	215	215	215	160	80	80	80
5	38	-	50	-	80	240	215	215	215	160	80	80	80
6	38	-	50	-	80	240	232	232	232	200	165	165	165

m - Distanza del bullone dall'anima

m_x – Distanza del bullone dall'ala della trave

e – Distanza del bullone dal bordo esteriore

e_x – Distanza del bullone dal bordo esteriore orizzontale

p – Distanza dei bulloni

l_{eff,cp} – Lunghezza efficace per un bullone nei meccanismi circolari

l_{eff,nc} – Lunghezza efficace per un bullone nei meccanismi non circolari

 $l_{\text{eff,1}}$ — Lunghezza efficace per un bullone per il modo 1

l_{eff,2} – Lunghezza efficace per un bullone per il modo 2

 $l_{\text{eff,cp,g}}\quad$ – Lunghezza efficace per un gruppo di bulloni nei meccanismi circolari

l_{eff,nc,g} – Lunghezza efficace per un gruppo di bulloni nei meccanismi non circolari

l_{eff,1,g} – Lunghezza efficace per un gruppo di bulloni per il modo 1

eff,2,g – Lunghezza efficace per un gruppo di bulloni per il modo 2

Resistenza del giunto alla trazione

F_{t,Rd} = 254,16 [kN] Resistenza del bullone alla trazione [Tabella 3.4] B_{p,Rd} = 466,87 [kN] Resistenza del bullone al passaggio della testa [Tabella 3.4]

 $F_{t,fc,Rd} \quad - resistenza \ dell'ala \ della \ colonna \ alla \ flessione$

F_{t,wc,Rd} – resistenza dell'anima della colonna alla trazione

 $F_{t,ep,Rd} \quad - \, resistenza \, \, della \, lamiera \, alla \, flessione$

F_{t.wb.Rd} – resistenza dell'anima alla trazione

 $F_{t,fc,Rd} = Min (F_{T,1,fc,Rd}, F_{T,2,fc,Rd}, F_{T,3,fc,Rd})$ [6.2.6.4], [Tab.6.2] $F_{t,wc,Rd} = w b_{eff,t,wc} t_{wc} f_{yc} / g_{M0}$ [6.2.6.3.(1)]

 $F_{t,ep,Rd} = Min (F_{T,1,ep,Rd}, F_{T,2,ep,Rd}, F_{T,3,ep,Rd})$ [6.2.6.5], [Tab.6.2] $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / g_{M0}$ [6.2.6.8.(1)]

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione

P I.	I_	0
F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
t,wb,Rd(1) = 708,83	708,83	Anima della trave - trazione
{B{p,Rd}} = 933,73	933,73	Bulloni al passaggio della testa
RESISTENZA DELLA FILA DI BULLONI NUMERO 2		
Ft2,Rd,comp - Formula	Ft2,Rd,comp	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$T_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
3 _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo
RESISTENZA DELLA FILA DI BULLONI NUMERO 3		
t _{3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
t _{t,ep,Rd(3)} = 420,24	420,24	Piastra d'estremità - trazione
t,wb,Rd(3) = 656,43	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$E_{t,wb,Rd(3+2)} - \sum_{2} E_{t,j,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$f_{\text{t,wb,Rd}}(3+2+1) - \sum_{2} F_{\text{tj,Rd}} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo
ESISTENZA DELLA FILA DI BULLONI NUMERO 4		3 11
t4,Rd,comp - Formula	F _{t4,Rd,comp}	Componente
t _{4,Rd} = Min (F _{t4,Rd,comp})	230,75	Resistenza della fila di bulloni
t _{ep,Rd(4)} = 420,24	420,24	Piastra d'estremità - trazione
t,wb,Rd(4) = 656,43	656,43	Anima della trave - trazione
_{р,Rd} = 933,73	933,73	Bulloni al passaggio della testa
t _{t,ep,Rd(4+3)} - \sum_{3}^{3} F _{tj,Rd} = 461,50 - 186,96	274,54	Piastra d'estremità - trazione - gruppo
$t_{y,wb,Rd(4+3)} - \sum_{3} t_{y,Rd} = 401,30 - 180,90$	301,44	Anima della trave - trazione - gruppo
$t_{\text{t,pR},Rd(4+3+2)} - \sum_{3} 1 t_{\text{j,Rd}} = 488,40 - 180,50$ $t_{\text{t,pR},Rd(4+3+2)} - \sum_{3} 2 t_{\text{tj,Rd}} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{\text{t,wb,Rd}(4+3+2)} - \sum_3 F_{\text{tj,Rd}} = 032,23 - 401,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,p,Rd(4+3+2+1)} - \sum_{3} F_{t,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$E_{t,wb,Rd(4+3+2+1)} - \sum_{3} F_{t,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo
RESISTENZA DELLA FILA DI BULLONI NUMERO 5	342,37	Allilla della trave - trazione - gruppo
	-	
ts,Rd,comp - Formula	Ft5,Rd,comp	Componente
t _{s,Rd} = Min (F _{ts,Rd,comp})	230,75	Resistenza della fila di bulloni
$f_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
E _{t,wb,Rd(5)} = 656,43	656,43	Anima della trave - trazione
3 _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$E_{t,ep,Rd(5+4)} - \sum_4 E_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$f_{t,wb,Rd(5+4)} - \sum_4 f_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$f_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4}^{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$t, wb, Rd(5+4+3+2+1) - \sum_{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo
RESISTENZA DELLA FILA DI BULLONI NUMERO 6		
t _{6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(6+5)} - \sum_{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)} - \sum_{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$t_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo
F	E20.61	Anima dolla trava trazione gruppo

529,61

518,82

 $F_{t,wb,Rd(6+5+4)}$ - $\sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$

 $F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$

Anima della trave - trazione - gruppo

Piastra d'estremità - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	hj	F _{tj,Rd}	$F_{t,fc,Rd}$	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	431,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA TRAZIONE N_{j,Rd}

 $N_{j,Rd} = \sum F_{tj,Rd}$

 $N_{j,Rd}$ = 1785,49 [kN] Resistenza del giunto alla trazione [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,34 < 1,00 verificato (0,34)

Resistenza del giunto alla flessione

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} = 1438,49$	1438,49	Ala della trave - compressione

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 1438,49 - 431,24$	1007,25	Ala della trave - compressione
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1438,49 - 705,78$	732,71	Ala della trave - compressione
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente	
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni	
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione	
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione	
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa	
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1438,49 - 892,74$	545,74	Ala della trave - compressione	
$F_{t,ep,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo	
$F_{t,wb,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo	
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo	
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo	
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo	

F _{t4,Rc}	I,comp - I	Formula				F _{t4,Rd,comp}	Componente			
F _{t,wb,}	Rd(4 + 3 +	2+1) - ∑3 ¹ F	t _{j,Rd} = 1235,31 - 8	92,74		342,57	Anima della tı	ave - trazion	e - gruppo	
RESISTENZA DELLA FILA DI BULLONI NUMERO 5 Fts,Rd,comp - Formula										
t5,Rd	I,comp - I	Formula				F _{t5,Rd,comp}	Componente			
t5,Rd	= Min	(F _{t5,Rd,comp})				230,75	Resistenza de	la fila di bull	oni	
$F_{t,ep,Rd(5)} = 420,24$						420,24	Piastra d'estre	Piastra d'estremità - trazione		
t,wb,	_{Rd(5)} = 6	556,43				656,43	Anima della ti	ave - trazion	e	
3 _{p,Rd}	= 933,	73				933,73	Bulloni al pass	aggio della t	esta	
c,fb,F	Rd - ∑1 ⁴	$F_{tj,Rd} = 143$	8,49 - 1123,50			314,99	Ala della trave	- compressi	ione	
F _{t,ep,I}	Rd(5 + 4) -	$\sum_4^4 F_{tj,Rd} =$	461,50 - 230,75			230,75	Piastra d'estre	emità - trazio	ne - gruppo	
F _{t,wb,}	Rd(5 + 4)	$-\sum_4^4 F_{tj,Rd} =$	488,40 - 230,75			257,65	Anima della tr	ave - trazion	e - gruppo	
F _{t,ep,I}	Rd(5 + 4 +	₃₎ - ∑4 ³ F _{tj,Rd}	s = 692,25 - 417,7	7 2		274,54	Piastra d'estre	emità - trazio	ne - gruppo	
F _{t,wb,}	Rd(5 + 4 +	3) - ∑4 ³ F _{tj,Re}	d = 732,60 - 417,	72		314,88	Anima della ti	ave - trazion	e - gruppo	
F _{t,ep,I}	Rd(5 + 4 + 3	3 + 2) - ∑4 ² Ft	_{tj,Rd} = 923,01 - 692	2,25		230,75	Piastra d'estre	emità - trazio	ne - gruppo	
F _{t,wb,}	Rd(5 + 4 +	3 + 2) - ∑4 ² F	tj,Rd = 976,80 - 69	2,25		284,55	Anima della ti	ave - trazion	e - gruppo	
t,ep,l	Rd(5 + 4 + 3	3 + 2 + 1) - \(\sum_4^1\)	F _{tj,Rd} = 1398,03 -	1123,50		274,54	Piastra d'estre	emità - trazio	ne - gruppo	
t,wb,	Rd(5 + 4 +	3+2+1) - 24	¹ F _{tj,Rd} = 1479,51	- 1123,50		356,02	Anima della tı	ave - trazion	e - gruppo	
RESI	STENZ	A DELLA F	ILA DI BULLONI I	NUMERO 6						
t6,Rd	I,comp - I	Formula				F _{t6,Rd,comp}	Componente			
t6,Rd	= Min	(F _{t6,Rd,comp})				84,24	Resistenza de	la fila di bull	oni	
	Rd(6) = 4					431,24	Piastra d'estre	emità - trazio	ne	
	_{Rd(6)} = 7					708,83	Anima della ti	ave - trazion	e	
B _{p,Rd}	= 933,	73				933,73	Bulloni al pass	aggio della t	esta	
F _{c,fb,f}	Rd - ∑1 ⁵	F _{tj,Rd} = 143	8,49 - 1354,25			84,24	Ala della trave	- compressi	ione	
F _{t,ep,i}	Rd(6 + 5) =	$\sum_{5}^{5} F_{tj,Rd} =$	705,78 - 230,75			475,03	Piastra d'estre	Piastra d'estremità - trazione - gruppo		
F _{t,wb,}	Rd(6 + 5)	$-\sum_{5}^{5} F_{tj,Rd} =$	746,91 - 230,75			516,16	Anima della ti	Anima della trave - trazione - gruppo		
F _{t,ep,i}	Rd(6 + 5 +	₄₎ - ∑ ₅ ⁴ F _{tj,Rd}	a = 936,53 - 461,5	50		475,03	Piastra d'estre	Piastra d'estremità - trazione - gruppo		
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$						529,61	Anima della ti	ave - trazion	e - gruppo	
F _{t,ep,i}	Rd(6 + 5 +	4+3) - ∑5 ³ Ft	tj,Rd = 1167,28 - 64	48,47		518,82	Piastra d'estre	emità - trazio	ne - gruppo	
F _{t,wb,}	Rd(6 + 5 +	4+3) - ∑5 ³ F	tj,Rd = 1235,31 - 6	48,47		586,85	Anima della ti	ave - trazion	e - gruppo	
F _{t,ep,i}	Rd(6 + 5 +	4 + 3 + 2) - ∑5 ²	F _{tj,Rd} = 1398,03 -	923,01		475,03	Piastra d'estre	emità - trazio	ne - gruppo	
F _{t,wb,}	Rd(6 + 5 +	4+3+2) - \(\sum_5^2\)	² F _{tj,Rd} = 1479,51 -	923,01		556,51	Anima della tr	ave - trazion	e - gruppo	
F _{t,ep,i}	Rd(6 + 5 +	4+3+2+1) - 2	$\Sigma_{5}^{1} F_{tj,Rd} = 1873,0$	6 - 1354,25		518,82	Piastra d'estre	emità - trazio	ne - gruppo	
F _{t,wb,}	Rd(6 + 5 +	4+3+2+1) -	$\sum_{5}^{1} F_{tj,Rd} = 1982,2$	3 - 1354,25		627,98	Anima della ti	ave - trazion	e - gruppo	
ТАВ	ELLA R	ICAPITOLA	ATIVA DELLE FOR	ZE						
Nr	hj		F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	$F_{t,ep,Rd}$	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$	
1	466		431,24	-	-	431,24	708,83	508,32	933,73	
2	386		274,54	-	-	420,24	656,43	508,32	933,73	
3	306		186,96	-	-	420,24	656,43	508,32	933,73	
	226		230,75	-	-	420,24	656,43	508,32	933,73	
5	146		230,75	-	-	420,24	656,43	508,32	933,73	
6	66		84,24	-	-	431,24	708,83	508,32	933,73	
M _{j,Rd} M _{j,Rd}	ı = ∑ h _j ı =		NTO ALLA FLESS	-	giunto alla flession 0,53 < 1,00	ie	[6.2] verificato	(0,53)		
-		™ ⊒ 1,0 Il'interazio	ne M+N		2,23 1 1,00			(5,55)		
		Rd + Nb1,Ed /					[6.2.	5.1.(3)]		
		$Rd + N_{b1,Ed}$			0,86 < 1,00		verificato	(0,86)		
	-		al taglio V _{j,Rd}							
a _v =		0,60	J - jjila	Coefficiente no	er il calcolo di F _{v,Rd}		[Tabella 3.4]			
uv – b _{Lf} =		0,99		-		nti lunghi	[3.8]			
b _{Lf} = 0,99 Coefficiente di riduzione per i giun F _{v,Rd} = 215,34 [kN] Resistenza di un bullone al taglio		. J	[Tabella 3.4]							
	_{max} =	254,16	[kN]		ın bullone alla trazi	one	[Tabella 3.4]			
F _{b,Rd,}		320,18	[kN]		ın bullone intermed		[Tabella 3.4]			
F _{b,Rd,}		412,80	[kN]		ın bullone estremo	•	[Tabella 3.4]			
Nr						•	F _{tj,Ed}		F _{vj,Rd}	
INT 1	F _{tj,Rd,I}		F _{tj,Ed,N} 144,92		F _{tj,Rd,M} 431,24	F _{tj,Ed,M} 226,91	7tj,Ed 371,83		205,65	
1 2										
•	274,5)4	92,26		274,54	144,46	236,71		287,42	

Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F _{tj,Rd,M}	F _{tj,Ed,M}	F _{tj,Ed}	F _{vj,Rd}
3	186,96	62,83	186,96	98,38	161,21	333,12
4	230,75	77,54	230,75	121,42	198,96	310,27
5	230,75	77,54	230,75	121,42	198,96	310,27
6	431,24	144,92	84,24	44,33	189,24	316,15

 $\begin{array}{lll} F_{tj,Rd,N} & & - \mbox{Resistenza di una fila di bulloni alla trazione pura} \\ F_{tj,Ed,N} & & - \mbox{Forza in una fila di bulloni dovuta all'azione assiale} \\ F_{tj,Rd,M} & & - \mbox{Resistenza di una fila di bulloni alla flessione pura} \\ F_{tj,Ed,M} & & - \mbox{Forza in una fila di bulloni dovuta al momento} \\ F_{tj,Ed} & & - \mbox{Forza di trazione massima in una fila di bulloni} \\ F_{vj,Rd} & & - \mbox{Resistenza ridotta della fila di bulloni} \\ \end{array}$

$$\begin{split} F_{tj,Ed,N} &= N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd} \\ F_{tj,Ed,M} &= M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd} \end{split}$$

 $F_{tj,Ed} = F_{tj,Ed,N} + F_{tj,Ed,M}$

 $F_{vj,Rd} = Min (n_h F_{v,Ed} (1 - F_{tj,Ed} / (1.4 n_h F_{t,Rd,max}), n_h F_{v,Rd}, n_h F_{b,Rd}))$

-,,	. (v,2a (-		in a spray year a spray year		
$V_{j,Rd} = n_h \sum$	₁ n F _{vj,Rd}		[Tab	pella 3.4]	
$V_{j,Rd} =$	1762,88	[kN]	Resistenza del giunto al taglio V _{j,Rd}	[Tabella 3.4]	
$V_{b1,Ed}$ / $V_{j,R}$	td ≤ 1,0		0,05 < 1,00	verificato (0,05)	
Resistenza	a delle sald	ature			
$A_w =$	165,70	[cm ²]	Area di tutte le saldature	[4.5.3.2(2)]	
A _{wy} =	72,18	[cm ²]	Area delle saldature orizzontali	[4.5.3.2(2)]	
$A_{wz} =$	93,52	[cm ²]	Area delle saldature verticali	[4.5.3.2(2)]	
I _{wy} =	69261,5	1 [cm ⁴]	Momento di inerzia del sistema di saldature rispetto a	ll'asse oriz. [4.5.3.2(5)]	
s _{^max} =t _{^max}	= 94,21	[MPa]	Sollecitazione normale nella saldatura	[4.5.3.2(6)]	
s^=t^ =	82,89	[MPa]	Sollecitazione nella saldatura verticale	[4.5.3.2(5)]	
t _{II} =	9,62	[MPa]	Sollecitazione tangenziale	[4.5.3.2(5)]	
b _w =	0,85		Coefficiente di correlazione	[4.5.3.2(7)]	
$\ddot{O}[s_{max}^2 +$	3*(t _{^max} ²)]	$\leq f_u/(b_w*g_{M2})$	188,42 < 404,71	verificato (0,47)	
Ö[s^2 + 3*	$(t^2+t_{ }^2)] \leq$	$f_u/(b_w*g_{M2})$	166,62 < 404,71	verificato (0,41)	
s^ ≤ 0.9*fu	/g _{M2}		94,21 < 309,60	verificato (0,30)	

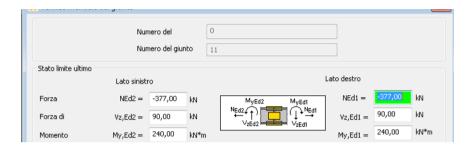
Rigidezza del giunto

 $L'azione\ assiale\ nella\ trave\ sorpassa\ il\ 5\%\ di\ resistenza\ N_{pl,Rd}.\ Conforme\ al\ punto\ 6.3.1.(4)\ la\ rigidezza\ del\ giunto\ non\ pu\`o\ essere\ calcolata.$

Il componente più debole:

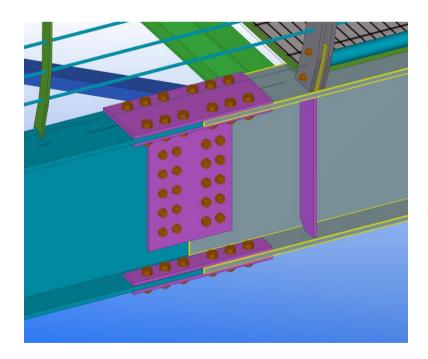
ALA E ANIMA DELLA TRAVE IN COMPRESSIONE

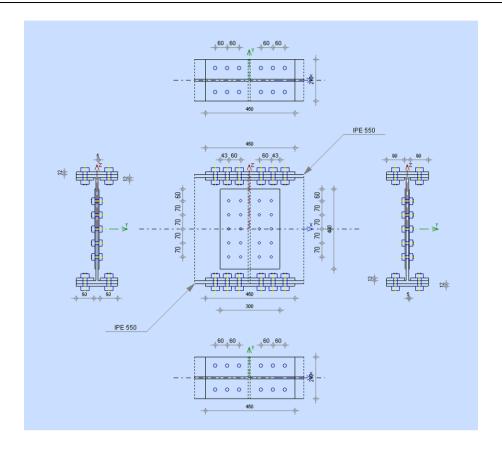
Giunto conforme alla norma	Coefficiente	0,86



5.3.9. Verifica giunto di continuità IPE550 – giunto/coprigiunto

La IPE550 è suddivisa in 7 tronchi. Le giunzioni sono di 2 tipi: con flangia di testa e con giunto-coprigiunto. Tutte le giunzioni sono state localizzate nei punti di azzeramento dei momenti nella maggior parte delle combinazioni di carico. Per questioni di montaggoio le giunzioni sono tute flangiate tranne quella del tronco centrale in modo da consentire il completamento della trave con i necessari margini di tolleranza per la posa.


La giunzione a coprigiunti è sottoposta alle seguenti sollecitazioni estreme:


- Caso1.

- Caso2.

CASO 1

Autodesk Robot Structural Analysis Professional 2018 Calcolo del giunto incastrato Trave - Trave EN 1993-1-8:2005/AC:2009

Coefficiente 0,86

Generale

N. giunto: 5

Nome del giunto Trave - trave

-180,0

Geometria Lato sinistro Trave

a =

Profilato: **IPE 550**

Angolo d'inclinazione

550 [mm] Altezza della sezione della trave h_{bl} = 210 [mm] Larghezza della sezione della trave b_{fbl} = 11 [mm] Spessore dell'anima della sezione della trave twhi = 17 [mm] Spessore dell'ala della sezione della trave t_{fbl} = 24 Raggio di raccordo della sezione della trave [mm] r_{bl} = A_{bl} = 134,00 [cm²] Area della sezione della trave

Momento di inerzia della sezione della trave

67120,00 [cm⁴] I_{vbl} =

Materiale: S 275

0,0

[MPa] 275,00 Resistenza $f_{yb} =$

[Deg]

Lato destro

Trave

a =

Profilato: **IPE 550**

Angolo d'inclinazione

[Deg] 550 [mm] Altezza della sezione della trave h_{br} = 210 [mm] Larghezza della sezione della trave $b_{fbr} =$ [mm] 11 Spessore dell'anima della sezione della trave 17 Spessore dell'ala della sezione della trave [mm] t_{fbr} = 24 [mm] Raggio di raccordo della sezione della trave $r_{br} =$ 134,00 [cm²] Area della sezione della trave $A_{br} =$

67120,00 Momento di inerzia della sezione della trave [cm⁴]

Materiale: S 275

275,00 [MPa] Resistenza $f_{yb} =$

Вu		

Il piano di taglio attraversa la parte NON FILETTATA del bullone.

d = 24 [mm] Diametro del bullone Classe = 10.9 Classe del bullone

 $\begin{array}{lll} F_{tRd} = & 254,16 & [kN] & & Resistenza \ del \ bullone \ alla \ trazione \\ n_h = & 2 & & Numero \ di \ colonne \ dei \ bulloni \\ n_v = & 6 & & Numero \ di \ file \ di \ bulloni \end{array}$

 $h_1 = 85$ [mm] Distanza del primo bullone dal bordo superiore della lamiera estrema

Distanza orizzontale e_i = 110 [mm]

Distanza verticale $p_i = 80;80;80;80;80 [mm]$

Lamiera

Materiale: S 275

 $f_{ypr} = 275,00$ [MPa] Resistenza

Saldature in angolo esterno

 $a_w = 10$ [mm] Saldatura dell'anima $a_f = 10$ [mm] Saldatura dell'ala

Coefficienti di materiale

[2.2] 1,00 Coefficiente di sicurezza parziale $g_{M0} =$ 1,00 Coefficiente di sicurezza parziale [2.2] g_{M1} = 1,25 Coefficiente di sicurezza parziale [2.2] g_{M2} = 1,25 Coefficiente di sicurezza parziale [2.2] g_{M3} =

Carichi

Stato limite ultimo (SLU)

Condizione Calcolo manuale.

 $\begin{array}{lll} M_{b1,Ed} = & 240,00 & [kN*m] & Momento flettente nella trave destra \\ V_{b1,Ed} = & 90,00 & [kN] & Azione di taglio nella trave destra \\ N_{b1,Ed} = & 600,00 & [kN] & Azione assiale nella trave destra \\ \end{array}$

Risultati

Resistenze della trave

TRAZIONE

 $A_b = 134,00$ [cm²] Area di sezione EN1993-1-1:[6.2.3]

 $N_{tb,Rd} = A_b f_{yb} / g_{M0}$

N_{tb,Rd} = 3685,00 [kN] Resistenza di calcolo della sezione alla trazione EN1993-1-1:[6.2.3]

TAGLIO

 $A_{vb} = 71.93$ [cm²] Area al taglio EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \ddot{O}3) / g_{MO}$

 $V_{cb,Rd} = 1141,97$ [kN] Resistenza di calcolo della sezione al taglio EN1993-1-1:[6.2.6.(2)] $V_{b1,Ed} / V_{cb,Rd} \le 1,0$ verificato (0,08)

FLESSIONE - MOMENTO PLASTICO (SENZA RINFORZI)

 W_{plb} = 2787,01 [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / g_{M0}$

 $M_{b,pl,Rd} = 766,43 \qquad \text{[kN*m]} \qquad \text{Resistenza plastica della sezione alla flessione (senza rinforzi) EN1993-1-1:[6.2.5.(2)]}$

FLESSIONE AL CONTATTO DELLA PIASTRA O DELL'ELEMENTO GIUNTO

 $W_{pl} = 2787,01$ [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5]

 $M_{cb,Rd} = W_{pl} f_{yb} / g_{M0}$

M_{cb,Rd} = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5]

ALA ED ANIMA ALLA COMPRESSIONE

 $M_{cb,Rd} = 766,43$ [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5] $h_f = 533$ [mm] Distanza tra i centri di gravità delle ali [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F_{c,fb,Rd} = 1438,49 [kN] Resistenza dell'ala compressa e dell'anima [6.2.6.7.(1)]

Parametri geometrici del giunto

LUNGHEZZE EFFICACI E PARAMETRI - PIASTRA D'ESTREMITA

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	l _{eff,1}	I _{eff,2}	$I_{\rm eff,cp,g}$	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	38	-	50	-	80	240	232	232	232	200	165	165	165
2	38	-	50	-	80	240	215	215	215	160	80	80	80
3	38	-	50	-	80	240	215	215	215	160	80	80	80
4	38	-	50	-	80	240	215	215	215	160	80	80	80

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	l _{eff,1}	I _{eff,2}	l _{eff,cp,g}	I _{eff,nc,g}	l _{eff,1,g}	I _{eff,2,g}
5	38	-	50	-	80	240	215	215	215	160	80	80	80
6	38	_	50	-	80	240	232	232	232	200	165	165	165

m - Distanza del bullone dall'anima

m_x – Distanza del bullone dall'ala della trave

e - Distanza del bullone dal bordo esteriore

e_x – Distanza del bullone dal bordo esteriore orizzontale

p - Distanza dei bulloni

l_{eff,cp} – Lunghezza efficace per un bullone nei meccanismi circolari

l_{eff,nc} – Lunghezza efficace per un bullone nei meccanismi non circolari

 $l_{eff,1}$ — Lunghezza efficace per un bullone per il modo 1 $l_{eff,2}$ — Lunghezza efficace per un bullone per il modo 2

 $l_{
m eff,cp,g}~~$ – Lunghezza efficace per un gruppo di bulloni nei meccanismi circolari

 $l_{{\sf eff},nc,g}$ — Lunghezza efficace per un gruppo di bulloni nei meccanismi non circolari

 $l_{
m eff,1,g}$ — Lunghezza efficace per un gruppo di bulloni per il modo 1

l_{eff,2,g} – Lunghezza efficace per un gruppo di bulloni per il modo 2

Resistenza del giunto alla trazione

 $F_{t,Rd} =$ 254,16 [kN] Resistenza del bullone alla trazione [Tabella 3.4] $B_{p,Rd} =$ 466,87 [kN] Resistenza del bullone al passaggio della testa [Tabella 3.4]

 $F_{t,fc,Rd}$ — resistenza dell'ala della colonna alla flessione $F_{t,wc,Rd}$ — resistenza dell'anima della colonna alla trazione

F_{t,ep,Rd} – resistenza della lamiera alla flessione

F_{t,wb,Rd} – resistenza dell'anima alla trazione

 $\mathsf{F}_{\mathsf{t},\mathsf{fc},\mathsf{Rd}} = \mathsf{Min}\; (\mathsf{F}_{\mathsf{T},\mathsf{1},\mathsf{fc},\mathsf{Rd}}\;,\; \mathsf{F}_{\mathsf{T},\mathsf{2},\mathsf{fc},\mathsf{Rd}}\;,\; \mathsf{F}_{\mathsf{T},\mathsf{3},\mathsf{fc},\mathsf{Rd}})$

 $F_{t,wc,Rd} = w \ b_{eff,t,wc} \ t_{wc} \ f_{yc} \ / \ g_{M0}$

 $F_{t,ep,Rd} = Min \; \big(F_{T,1,ep,Rd} \; , \; F_{T,2,ep,Rd} \; , \; F_{T,3,ep,Rd} \big)$

 $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / g_{M0}$

[6.2.6.4], [Tab.6.2]

[6.2.6.3.(1)]

[6.2.6.5], [Tab.6.2]

[6.2.6.8.(1)]

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

Ft1,Rd,comp - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

F _{t2,Rd,comp} - Formula	Ft2,Rd,comp	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

Ft3,Rd,comp - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} {}^{1}F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4}^{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 6

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{s} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	hj	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	$F_{t,ep,Rd}$	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	431,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA TRAZIONE N_{j,Rd}

 $N_{j,Rd} = \sum F_{tj,Rd}$

 $N_{j,Rd} = 1785,49$ [kN] Resistenza del giunto alla trazione [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,34 < 1,00 verificato (0,34)

Resistenza del giunto alla flessione

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c.fb.Rd} = 1438.49$	1438.49	Ala della trave - compressione

Ft2,Rd,comp - Formula	Ft2,Rd,comp	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Componente
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{1} F_{tj,Rd} = 1438,49 - 431,24$	1007,25	Ala della trave - compressione
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1438,49 - 705,78$	732,71	Ala della trave - compressione
$F_{t,ep,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1438,49 - 892,74$	545,74	Ala della trave - compressione
$F_{t,ep,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 461,50$ - 186,96	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{tS,Rd} = Min (F_{tS,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 1438,49 - 1123,50$	314,99	Ala della trave - compressione
$F_{t,ep,Rd(5+4)} - \sum_4 F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_4 F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{i=1}^{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente	
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	84,24	Resistenza della fila di bulloni	
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione	
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione	
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa	
$F_{c,fb,Rd} - \sum_{1} F_{tj,Rd} = 1438,49 - 1354,25$	84,24	Ala della trave - compressione	
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo	
$F_{t,wb,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo	
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo	
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo	
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo	

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	hj	F _{tj,Rd}	$F_{t,fc,Rd}$	F _{t,wc,Rd}	$F_{t,ep,Rd}$	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	84,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA FLESSIONE M_{j,Rd}

MiRd	=	7	h:	Fairna
IVI Rd	_	,	Hi	I ti Rd

 $M_{j,Rd} = 456,12$ [kN*m] Resistenza del giunto alla flessione [6.2]

 $M_{b,l,Ed} / M_{j,Rd} \le 1,0$ verificato (0,53)

Verifica dell'interazione M+N

 $M_{b1,Ed} / M_{j,Rd} + N_{b1,Ed} / N_{j,Rd} \le 1$ [6.2.5.1.(3)]

 $M_{b1,Ed} / M_{j,Rd} + N_{b1,Ed} / N_{j,Rd}$ 0,86 < 1,00 verificato (0,86)

Resistenza del giunto al taglio V_{i,Rd}

a _v =	0,60		Coefficiente per il calcolo di F _{v,Rd}	[Tabella 3.4]
$b_{Lf} =$	0,99		Coefficiente di riduzione per i giunti lunghi	[3.8]
$F_{v,Rd} =$	215,34	[kN]	Resistenza di un bullone al taglio	[Tabella 3.4]
$F_{t,Rd,max} =$	254,16	[kN]	Resistenza di un bullone alla trazione	[Tabella 3.4]
$F_{b,Rd,int} =$	320,18	[kN]	Resistenza di un bullone intermedio alla pressione	[Tabella 3.4]
$F_{b.Rd.ext} =$	412,80	[kN]	Resistenza di un bullone estremo alla pressione	[Tabella 3.4]

Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F _{tj,Rd,M}	F _{tj,Ed,M}	F _{tj,Ed}	$F_{vj,Rd}$
1	431,24	144,92	431,24	226,91	371,83	205,65
2	274,54	92,26	274,54	144,46	236,71	287,42
3	186,96	62,83	186,96	98,38	161,21	333,12
4	230,75	77,54	230,75	121,42	198,96	310,27
5	230,75	77,54	230,75	121,42	198,96	310,27
6	431,24	144,92	84,24	44,33	189,24	316,15

 $\begin{array}{lll} F_{tj,Rd,N} & & - \mbox{Resistenza di una fila di bulloni alla trazione pura} \\ F_{tj,Ed,N} & & - \mbox{Forza in una fila di bulloni dovuta all'azione assiale} \\ F_{tj,Rd,M} & & - \mbox{Resistenza di una fila di bulloni alla flessione pura} \\ F_{tj,Ed,M} & & - \mbox{Forza in una fila di bulloni dovuta al momento} \\ F_{tj,Ed} & & - \mbox{Forza di trazione massima in una fila di bulloni} \\ F_{vi,Rd} & & - \mbox{Resistenza ridotta della fila di bulloni} \\ \end{array}$

 $F_{tj,Ed,N} = N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd}$

 $F_{tj,Ed,M} = M_{j,Ed} F_{tj,Rd,M} / M_{j,Rd}$

 $\mathsf{F}_{\mathsf{tj},\mathsf{Ed}} = \mathsf{F}_{\mathsf{tj},\mathsf{Ed},\mathsf{N}} + \mathsf{F}_{\mathsf{tj},\mathsf{Ed},\mathsf{M}}$

 $F_{vj,Rd} = Min \left(n_h \; F_{v,Ed} \; (1 - F_{tj,Ed} / \; (1.4 \; n_h \; F_{t,Rd,max}), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd})\right)$

 $V_{j,Rd} = n_h \sum_{1}^{n} F_{v_j,Rd}$ [Tabella 3.4]

 $V_{j,Rd} = 1762,88$ [kN] Resistenza del giunto al taglio $V_{j,Rd}$ [Tabella 3.4]

 $V_{b1,Ed} / V_{j,Rd} \le 1,0$ 0,05 < 1,00 verificato (0,05)

Resistenza delle saldature

$A_w =$	165,70	[cm ²]	Area di tutte le saldature	[4.5.3.2(2)]
A _{wy} =	72,18	[cm ²]	Area delle saldature orizzontali	[4.5.3.2(2)]
$A_{wz} =$	93,52	[cm ²]	Area delle saldature verticali	[4.5.3.2(2)]
$I_{wy} =$	69261,5	1 [cm ⁴]	Momento di inerzia del sistema di saldature rispetto all'asse or	iz. [4.5.3.2(5)]
s _{^max} =t _{^max}	_x = 94,21	[MPa]	Sollecitazione normale nella saldatura	[4.5.3.2(6)]
s^=t^ =	82,89	[MPa]	Sollecitazione nella saldatura verticale	[4.5.3.2(5)]
t _{II} =	9,62	[MPa]	Sollecitazione tangenziale	[4.5.3.2(5)]
h -	0.05		Coefficiente di correlazione	$[A = 2 \ 2/7]$

p _w =	0,85	Coefficiente di correlazione	[4.5.3.2	(7)]
Ö[s _{^ma}	$a_{ax}^{2} + 3*(t_{max}^{2})] \le f_{u}/(b_{w}*g_{M2})$	188,42 < 404,71	verificato	(0,47)
Ö[s^2 +	$+3*(t_{\wedge}^2+t_{II}^2)] \le f_u/(b_w*g_{M2})$	166,62 < 404,71	verificato	(0,41)
$s_{\wedge} \leq 0$.	9*f _u /g _{M2}	94,21 < 309,60	verificato	(0,30)

Rigidezza del giunto

L'azione assiale nella trave sorpassa il 5% di resistenza N_{pl.Rd}. Conforme al punto 6.3.1.(4) la rigidezza del giunto non può essere calcolata.

Il componente più debole:

ALA E ANIMA DELLA TRAVE IN COMPRESSIONE

Giunto conforme alla norma Coefficiente 0,86

CASO 2

Autodesk Robot Structural Analysis Professional 2018

Calcolo del giunto incastrato Trave - Trave
EN 1993-1-8:2005/AC:2009

Coefficiente
0,86

Generale

N. giunto: 5

Nome del giunto Trave - trave

Geometria Lato sinistro Trave

Profilato: IPE 550

a = -180,0 [Deg] Angolo d'inclinazione h_{bl} = 550 [mm] Altezza della sezione della trave 210 [mm] Larghezza della sezione della trave b_{fbl} = 11 Spessore dell'anima della sezione della trave t_{wbl} = [mm]

 $t_{fbl} = 17$ [mm] Spessore dell'ala della sezione della trave $r_{bl} = 24$ [mm] Raggio di raccordo della sezione della trave $A_{bl} = 134,00$ [cm²] Area della sezione della trave

 $I_{xbl} = 67120,00$ [cm⁴] Momento di inerzia della sezione della trave

Materiale: S 275

 $f_{yb} = 275,00$ [MPa] Resistenza

Lato destro

Trave

Profilato: IPE 550

0,0 [Deg] Angolo d'inclinazione a = 550 Altezza della sezione della trave h_{br} = [mm] Larghezza della sezione della trave b_{fbr} = 210 [mm] 11 [mm] Spessore dell'anima della sezione della trave twbr = 17 [mm] Spessore dell'ala della sezione della trave t_{fbr} = 24 [mm] Raggio di raccordo della sezione della trave r_{br} = 134,00 [cm²] Area della sezione della trave $A_{hr} =$

A_{br} = 134,00 [cm²] Area della sezione della trave

 I_{xbr} = 67120,00 [cm⁴] Momento di inerzia della sezione della trave

Materiale: S 275

 $f_{yb} = 275,00$ [MPa] Resistenza

Bulloni

Il piano di taglio attraversa la parte NON FILETTATA del bullone.

d = 24 [mm] Diametro del bullone Classe = 10.9 Classe del bullone

 $F_{tRd} =$ 254,16 [kN] Resistenza del bullone alla trazione $n_h =$ 2 Numero di colonne dei bulloni $n_v =$ 6 Numero di file di bulloni

n₁ = 85 [mm] Distanza del primo bullone dal bordo superiore della lamiera estrema

Distanza orizzontale $e_i = 110 [mm]$

Distanza verticale p_i = 80;80;80;80;80 [mm]

Lamiera

 $\begin{array}{llll} h_{pr} = & 570 & [mm] & \text{Altezza della lamiera} \\ b_{pr} = & 210 & [mm] & \text{Larghezza della lamiera} \\ t_{pr} = & 20 & [mm] & \text{Spessore della lamiera} \end{array}$

Materiale: S 275

f_{ypr} = 275,00 [MPa] Resistenza

Saldature in angolo esterno

a_w = 10 [mm] Saldatura dell'anima

Saldature	ın	ango	IN	esterno

a _w =	10	[mm]	Saldatura dell'anima
a _f =	10	[mm]	Saldatura dell'ala

Coefficienti di materiale

g _{M0} =	1,00	Coefficiente di sicurezza parziale	[2.2]
g _{M1} =	1,00	Coefficiente di sicurezza parziale	[2.2]
g _{M2} =	1,25	Coefficiente di sicurezza parziale	[2.2]
g _{M3} =	1,25	Coefficiente di sicurezza parziale	[2.2]
Carichi			

Stato limite ultimo (SLU)

Condizione Calcolo manuale.

 $\begin{array}{lll} M_{b1,Ed} = & 240,00 & [kN*m] & \text{Momento flettente nella trave destra} \\ V_{b1,Ed} = & 90,00 & [kN] & \text{Azione di taglio nella trave destra} \\ N_{b1,Ed} = & 600,00 & [kN] & \text{Azione assiale nella trave destra} \end{array}$

Risultati

Resistenze della trave

TRAZIONE

A_b = 134,00 [cm²] Area di sezione EN1993-1-1:[6.2.3]

 $N_{tb,Rd} = A_b f_{yb} / g_{M0}$

N_{tb,Rd} = 3685,00 [kN] Resistenza di calcolo della sezione alla trazione EN1993-1-1:[6.2.3]

TAGLIO

 $A_{vb} = 71,93$ [cm²] Area al taglio EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \ddot{O}3) / g_{M0}$

 $V_{cb,Rd} = 1141,97$ [kN] Resistenza di calcolo della sezione al taglio EN1993-1-1:[6.2.6.(2)] $V_{b1,Ed} / V_{cb,Rd} \le 1,0$ verificato (0,08)

FLESSIONE - MOMENTO PLASTICO (SENZA RINFORZI)

 $W_{\text{plb}} = 2787,01 \quad \text{[cm}^3\text{]}$ Fattore plastico della sezione EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / g_{M0}$

M_{b,pl,Rd} = 766,43 [kN*m] Resistenza plastica della sezione alla flessione (senza rinforzi) EN1993-1-1:[6.2.5.(2)]

FLESSIONE AL CONTATTO DELLA PIASTRA O DELL'ELEMENTO GIUNTO

W_{pl} = 2787,01 [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5]

 $M_{cb,Rd}$ = W_{pl} f_{yb} / g_{M0}

 $M_{cb,Rd}$ = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5]

ALA ED ANIMA ALLA COMPRESSIONE

M_{cb,Rd} = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5] h_f = 533 [mm] Distanza tra i centri di gravità delle ali [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F_{c,fb,Rd} = 1438,49 [kN] Resistenza dell'ala compressa e dell'anima [6.2.6.7.(1)]

Parametri geometrici del giunto

LUNGHEZZE EFFICACI E PARAMETRI - PIASTRA D'ESTREMITA

Nr	m	m _x	е	e _x	р	I _{eff,cp}	I _{eff,nc}	l _{eff,1}	I _{eff,2}	I _{eff,cp,g}	I _{eff,nc,g}	l _{eff,1,g}	I _{eff,2,g}
1	38	-	50	-	80	240	232	232	232	200	165	165	165
2	38	-	50	-	80	240	215	215	215	160	80	80	80
3	38	-	50	-	80	240	215	215	215	160	80	80	80
4	38	-	50	-	80	240	215	215	215	160	80	80	80
5	38	-	50	-	80	240	215	215	215	160	80	80	80
6	38	-	50	-	80	240	232	232	232	200	165	165	165

m - Distanza del bullone dall'anima

 $m_x \,\,$ — Distanza del bullone dall'ala della trave

e – Distanza del bullone dal bordo esteriore

 $e_x \qquad - \, \text{Distanza del bullone dal bordo esteriore orizzontale} \\$

p — Distanza dei bulloni

 $l_{\text{eff,cp}}$ — Lunghezza efficace per un bullone nei meccanismi circolari $l_{\text{eff,nc}}$ — Lunghezza efficace per un bullone nei meccanismi non circolari

 $l_{eff,1}$ — Lunghezza efficace per un bullone per il modo 1 $l_{eff,2}$ — Lunghezza efficace per un bullone per il modo 2

 $I_{\text{eff,cp,g}}$ — Lunghezza efficace per un gruppo di bulloni nei meccanismi circolari $I_{\text{eff,nc,g}}$ — Lunghezza efficace per un gruppo di bulloni nei meccanismi non circolari

 $l_{\rm eff,1,g}$ — Lunghezza efficace per un gruppo di bulloni per il modo 1 $l_{\rm eff,2,g}$ — Lunghezza efficace per un gruppo di bulloni per il modo 2

Resistenza del giunto alla trazione

[6.2.6.8.(1)]

 $F_{t,Rd}$ = 254,16 [kN] Resistenza del bullone alla trazione [Tabella 3.4] $B_{p,Rd}$ = 466,87 [kN] Resistenza del bullone al passaggio della testa [Tabella 3.4]

$$\begin{split} F_{t,\text{fc,Rd}} &\quad -\text{resistenza dell'ala della colonna alla flessione} \\ F_{t,\text{wc,Rd}} &\quad -\text{resistenza dell'anima della colonna alla trazione} \end{split}$$

$$\begin{split} F_{t,ep,Rd} & - resistenza \ della \ lamiera \ alla \ flessione \\ F_{t,wb,Rd} & - resistenza \ dell'anima \ alla \ trazione \end{split}$$

$$\begin{split} F_{t,fc,Rd} &= Min\left(F_{T,1,fc,Rd} \;,\; F_{T,2,fc,Rd} \;,\; F_{T,3,fc,Rd}\right) & [6.2.6.4] \;,\; [Tab.6.2] \\ F_{t,wc,Rd} &= w \; b_{eff,t,wc} \; t_{wc} \; f_{yc} \;/\; g_{M0} & [6.2.6.3.(1)] \\ F_{t,ep,Rd} &= Min\left(F_{T,1,ep,Rd} \;,\; F_{T,2,ep,Rd} \;,\; F_{T,3,ep,Rd}\right) & [6.2.6.5] \;,\; [Tab.6.2] \end{split}$$

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

 $F_{t,wb,Rd} = b_{eff,t,wb} t_{wb} f_{yb} / g_{M0}$

F _{t1,Rd,comp} - Formula	Ft1,Rd,comp	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(5+4)} - \sum_4 F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)}$ - $\sum_{4}^{1} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 6

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(6+5)}$ - $\sum_{s}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	h _j	$\mathbf{F}_{tj,Rd}$	$\mathbf{F}_{t,fc,Rd}$	F _{t,wc,Rd}	$\mathbf{F}_{t,ep,Rd}$	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	431,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA TRAZIONE N_{j,Rd}

 $N_{j,Rd} = \sum F_{tj,Rd}$

 $N_{j,Rd} = 1785,49$ [kN] Resistenza del giunto alla trazione [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,34 < 1,00 verificato (0,34)

Resistenza del giunto alla flessione

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} = 1438,49$	1438,49	Ala della trave - compressione

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1} F_{tj,Rd} = 1438,49 - 431,24$	1007,25	Ala della trave - compressione
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1438,49 - 705,78$	732,71	Ala della trave - compressione
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo

F _{t3,Rd,co}	_{omp} - Formula				F _{t3,Rd,comp}	Componente				
F _{t,wb,Rd}	(3 + 2 + 1) - ∑2 ¹ F _{tj,f}	Rd = 991,11 - 705	5,78		285,33	Anima della tra	ave - trazione - gru	оро		
RESIST	TENZA DELLA I	ILA DI BULLON	I NUMERO 4							
F _{t4,Rd,co}	_{mp} - Formula				F _{t4,Rd,comp}	Componente				
F _{t4,Rd} =	Min (F _{t4,Rd,comp})			230,75	Resistenza del	a fila di bulloni			
F _{t,ep,Rd(}	4) = 420,24				420,24	Piastra d'estre	mità - trazione			
F _{t,wb,Rd}	(4) = 656,43				656,43	Anima della tra	ave - trazione			
B _{p,Rd} =	933,73				933,73	Bulloni al passa	aggio della testa			
F _{c,fb,Rd}	$-\sum_{1}^{3} F_{tj,Rd} = 143$	38,49 - 892,74			545,74	Ala della trave	- compressione			
		461,50 - 186,9	6		274,54	Piastra d'estre	mità - trazione - grı	nbbo		
F _{t,wb,Rd}	(4+3) - ∑3 ³ F _{tj,Rd} =	= 488,40 - 186,9	6		301,44		ave - trazione - gruj			
F _{t,ep,Rd(}	4 + 3 + 2) - ∑3 ² F _{tj,R}	_d = 692,25 - 461	,50		230,75	Piastra d'estre	mità - trazione - grı	uppo		
		Rd = 732,60 - 461			271,10	Anima della tra	ave - trazione - gru	оро		
F _{t,ep,Rd(}	4+3+2+1) - ∑3 ¹ F	t _{j,Rd} = 1167,28 -	892,74		274,54	Piastra d'estre	mità - trazione - grı	ıppo		
F _{t,wb,Rd}	(4+3+2+1) - ∑3 ¹ F	F _{tj,Rd} = 1235,31 -	892,74		342,57	Anima della tra	ave - trazione - gruj	оро		
		ILA DI BULLON			'					
F+5 Rd co	mp - Formula				F _{t5,Rd,comp}	Componente				
, .,	Min (F _{t5,Rd,comp})			230,75		la fila di bulloni			
	$_{5)} = 420,24$	1			420,24		mità - trazione			
	(5) = 420,24 (5) = 656,43				656,43	Anima della tra				
	933,73				933,73					
		38,49 - 1123,50			314,99	Bulloni al passaggio della testa Ala della trave - compressione				
		: 461,50 - 230,7!	5		230,75	Piastra d'estremità - trazione - gruppo				
		= 488,40 - 230,7			257,65	Anima della trave - trazione - gruppo				
		d = 692,25 - 417			274,54		Piastra d'estremità - trazione - gruppo			
		Rd = 732,60 - 417			314,88		ave - trazione - gruj			
		t _{i,Rd} = 923,01 - 6			230,75		mità - trazione - gru	-		
		t _{j,Rd} = 976,80 - 6			284,55	Anima della trave - trazione - gruppo				
		¹ F _{tj,Rd} = 1398,03			274,54		mità - trazione - gru	-		
		¹ F _{tj,Rd} = 1479,51			356,02		ave - trazione - gru	• •		
		ILA DI BULLON			12.2.7			- 1-		
	mp - Formula				F _{t6,Rd,comp}	Componente				
	•	\			84,24		la fila di bulloni			
	_{6,6,Rd} = Min (F _{t6,Rd,comp}) _{6,ep,Rd(6)} = 431,24				431,24		mità - trazione			
	$_{\text{p,Rd}(6)} = 431,24$ $_{\text{rb,Rd}(6)} = 708,83$				· '	Anima della tra				
	933,73				708,83		aye - trazione aggio della testa			
17 .	· · · · · · · · · · · · · · · · · · ·	38,49 - 1354,25			933,73 84,24		- compressione			
		: 705,78 - 230,7!	5		475,03		- compressione mità - trazione - gri	ınno		
		= 705,78 - 230,75 = 746,91 - 230,7			516,16			• •		
	– .	- 740,91 - 230,7 _d = 936,53 - 461			475,03		Anima della trave - trazione - gruppo Piastra d'estremità - trazione - gruppo			
		_d = 930,33 - 401 _{Rd} = 991,11 - 461			529,61		ave - trazione - gru	• •		
		$E_{tj,Rd} = 1167,28 - 1167$			518,82		mità - trazione - gru mità - trazione - gru	•		
		$= \frac{1107,28}{t_{j,Rd}} = 1235,31$			586,85		ave - trazione - gru			
					475,03					
$\begin{aligned} F_{t,ep,Rd(6+5+4+3+2)} - \sum_{s}^{2} F_{tj,Rd} &= 1398,03 - 923,01 \\ F_{t,wb,Rd(6+5+4+3+2)} - \sum_{s}^{2} F_{tj,Rd} &= 1479,51 - 923,01 \end{aligned}$			556,51		Piastra d'estremità - trazione - gruppo Anima della trave - trazione - gruppo					
		$\sum_{5}^{1} F_{tj,Rd} = 1479,31$			518,82		mità - trazione - gru mità - trazione - gru	•		
		$\sum_{5}^{1} F_{tj,Rd} = 1982,$			627,98		ave - trazione - gru			
		ATIVA DELLE FO			027,50	, amina dena tre	are diazione giu	~~~		
				F	r	r	F	В		
Nr h _j		F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	B _{p,Rd}		
	66 86	431,24	-	-	431,24	708,83	508,32	933,73		
	86	274,54	-	-	420,24	656,43	508,32	933,73		
	06	186,96	-	-	420,24	656,43	508,32	933,73		
4 22	26	230,75	-	-	420,24	656,43	508,32	933,73		

420,24

431,24

656,43

708,83

508,32

508,32

6 66 84,24 - RESISTENZA DEL GIUNTO ALLA FLESSIONE M_{J,Rd}

230,75

 $M_{j,Rd} = \sum h_j \; F_{tj,Rd}$

146 66

 $M_{j,Rd} = 456,12 \hspace{0.5cm} [kN*m] \hspace{0.5cm} \text{Resistenza del giunto alla flessione} \hspace{0.5cm} [6.2]$

933,73

933,73

									_			
	-	$_{Rd} \leq 1,0$				0,53 < 1,0	00	ver	ificato	(0,53)		
Verif	ica de	ll'interazio	ne M+N	I								
M _{b1,E}	d / Mj,i	Rd + N _{b1,Ed}	$N_{j,Rd} \leq 1$	l					[6.2	.5.1.(3)]		
$M_{b1,E}$	d / Mj,ı	$_{Rd}$ + $N_{b1,Ed}$ /	/ N _{j,Rd}			0,86 < 1,0	00	ver	ificato	(0,86)		
Resis	tenza	del giunto	al tagli	o $V_{j,Rd}$								
a _v =		0,60			Coefficiente p	oer il calcolo di F	r,Rd	[Τ	abella 3.4	!]		
$b_{Lf} =$		0,99			Coefficiente d	di riduzione per i	giunti lunghi	[3	.8]			
F _{v,Rd} :	=	215,34	[kN]		Resistenza di	un bullone al tag	glio	[T	abella 3.4	1]		
$F_{t,Rd,n}$	nax =	254,16	[kN]		Resistenza di	un bullone alla t	razione	Τ]	abella 3.4	!]		
$F_{b,Rd,i}$	nt =	320,18	[kN]		Resistenza di	un bullone inter	medio alla pressione	Τ]	abella 3.4	1]		
$F_{b,Rd,e}$	ext =	412,80	[kN]		Resistenza di	un bullone estre	mo alla pressione	Τ]	abella 3.4	1]		
Nr	F _{tj,Rd,I}	N		$\mathbf{F}_{tj,Ed,N}$		$\mathbf{F}_{tj,Rd,M}$	$F_{tj,Ed,M}$		$\mathbf{F}_{tj,Ed}$		$F_{vj,Rd}$	
1	431,2	24		144,92		431,24	226,91		371,83		205,65	
2	274,5	54		92,26		274,54	144,46		236,71		287,42	
3	186,9	96		62,83		186,96	98,38		161,21		333,12	
4	230,7	75		77,54		230,75	121,42		198,96		310,27	
5	230,	75		77,54		230,75	121,42		198,96		310,27	
6	431,2	24		144,92		84,24	44,33		189,24		316,15	
F _{tj,Rd,I}	N	_	Resiste	nza di un	a fila di bulloni	alla trazione pui	a ·					
F _{tj,Ed,f}	N .	_	Forza ir	n una fila	di bulloni dovu	uta all'azione assi	ale					
$F_{tj,Rd,I}$	М	-	Resiste	nza di un	a fila di bulloni	alla flessione pu	ra					
$F_{tj,Ed,f}$	И	_	Forza ir	n una fila	di bulloni dovu	ıta al momento						
$\boldsymbol{F}_{tj,Ed}$		-	Forza d	i trazione	e massima in u	na fila di bulloni						
$F_{\nu j,Rd}$		_	Resiste	nza ridot	ta della fila di b	oulloni						
$F_{tj,Ed,I}$	$_{N} = N_{j,E}$	$_{ m d}$ ${\sf F}_{ m tj,Rd,N}$ / ${\sf N}$	l j,Rd									
$F_{tj,Ed,t}$	$M = M_{j}$	$_{Ed}F_{tj,Rd,M}/$	$M_{j,Rd}$									
		$_{N}$ + $F_{tj,Ed,M}$										
$F_{vj,Rd}$	= Min	(n _h F _{v,Ed} (1	- F _{tj,Ed} / ((1.4 n _h F _t ,	Rd,max), Nh F _{v,Rd} ,	n _h F _{b,Rd}))						
	= n _h ∑₁	ⁿ F _{vj,Rd}						ella 3.4]				
V _{j,Rd} :	=	1762,88	[kN]		Resistenza de	el giunto al taglio	$V_{j,Rd}$	Τ]	abella 3.4	1]		
$V_{b1,Ec}$	$/V_{j,Rd}$	≤ 1,0				0,05 < 1,0	00	ver	ificato	(0,05)		
Resis	tenza	delle sald	ature									
A _w =		165,70	[cm ²]	Ar	ea di tutte le sa	aldature			[4.5.3.2(2	2)]		
A _{wy} =		72,18	[cm ²]	Ar	ea delle saldati	ure orizzontali			[4.5.3.2(2			
A _{wz} =		93,52	[cm ²]		ea delle saldati				[4.5.3.2(2			
I _{wy} =		69261,53					saldature rispetto al	ll'asse oriz.	-			
		= 94,21	[MPa]			rmale nella salda			[4.5.3.2(6			
s^=t^	=	82,89	[MPa]			lla saldatura vert	icaie		[4.5.3.2(5			
t _{II} =		9,62	[MPa]		llecitazione tar efficiente di co	=			[4.5.3.2(5			
b _w =	2 . ~	0,85	, E //I. 4		emciente ai co		404.74		[4.5.3.2(7			
		5*(t _{^max} ²)] 5				188,42 <	·		ificato ificato	(0,47)		
-	+ 3*(ı).9*f _u /	$(x^2 + t_{ }^2) \le 1$	ıı/(n∾.8ı	M2)		166,62 < 94,21 < 3	·		ificato	(0,41) (0,30)		
3^ ≥ (1.7 lu/	5M2				34,41 < 3	05,00	ver	incato	(0,30)		

Rigidezza del giunto

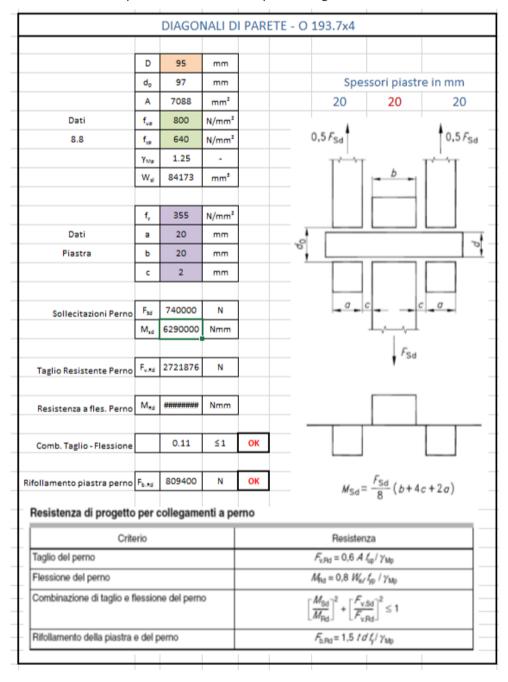
 $L'azione\ assiale\ nella\ trave\ sorpassa\ il\ 5\%\ di\ resistenza\ N_{pl,Rd}.\ Conforme\ al\ punto\ 6.3.1.(4)\ la\ rigidezza\ del\ giunto\ non\ pu\`o\ essere\ calcolata.$

Il componente più debole:

ALA E ANIMA DELLA TRAVE IN COMPRESSIONE

Giunto conforme alla norma	Coefficiente	0,86
----------------------------	--------------	------

5.3.10. Verifica perno


Il fissaggio degli stralli, dei tiranti passivi e dei montanti dei portali è stato realizzato con l'uso di un perno con le seguenti caratteristiche:

Perno Ø95 mm

Materiale Acciaio 38NiCrMo4

Di seguito si riporta la verifica del perno più sollecitato alla base del montante del portale caratterizzato dal maggior sforzo normale. Nsd =740 kN

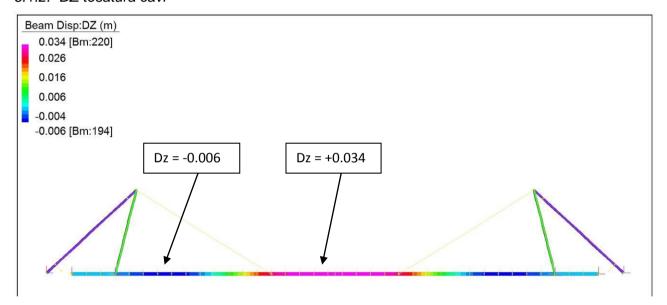
La verifica a favore di sicurezza viene condotta considerando solo 2 piani di taglio anche se in realtà sono state utilizzate 3+2 piastre individuando 3 piani di taglio.

6. VERIFICA DEGLI SPOSTAMENTI

In questo capitolo verifichiamo gli spostamenti massimi della struttura secondo le combinazione SLE e SLD. Verifichiamo il seguente spostamento:

6.1. SPOSTAMENTI SLE

6.1.1. Spostamento verticale


Si verifica lo spostamento verticale in condizione di pieno carico simmetrico.

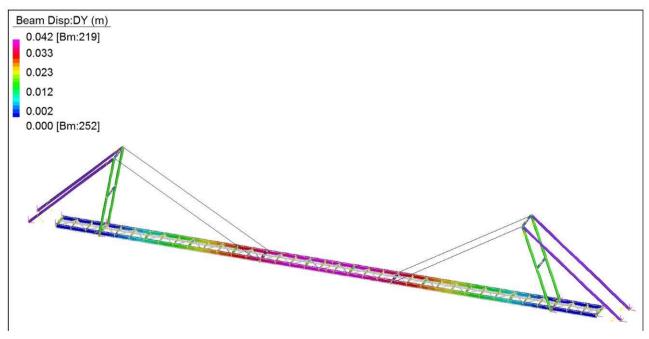
In mezzaria sia ha uno spostamento complessivo dato dalla somma della premonta dovuta al tensionamento dei cavi e della freccia verso il basso dovuta all'applicazione del carico folla.

Consideriamo a livello di confort uno spostamento ammissibile pari ad 1/300 della luce tra due appoggi considerando anche gli stralli come punti (se pur cedevoli) di appoggio. I limiti dello spostamento pertanto risultano i seguenti:

Dz max centrale = L/300 = 18000/300 = 60 mmDz max laterale = L/300 = 22000/300 = 73 mm

6.1.2. DZ tesatura cavi

6.1.3. DZ carico SLE FULL

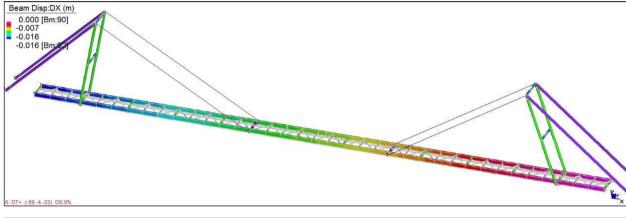

6.1.4. DZ totale percepito

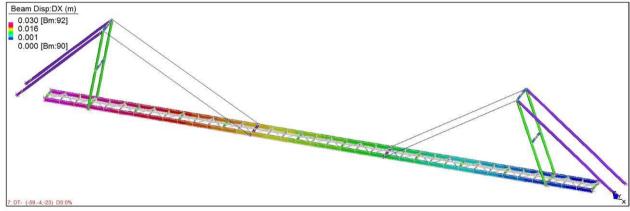
In campata centrale	Dz tot centrale = +34 +13 = 47 mm	< 60mm	Verificato
In campata laterale	Dz tot = $56 - 6 = 50 \text{ mm}$	< 73mm	Verificato

6.1.5. Spostamenti Dy per effetto del vento

Per effetto del vento il ponte si sposta lateralemente e si considera, per garantire un livello di confort accettabile una deformazione massima ammissibile pari a 1/500 della luce intesa come intera camata tra le due sponde estreme. Il valore massimo ammissibile pertanto risulta:

Dy max = L/500 = 62000/500 =**124**mm


Dai calcoli riulta:


Dy max = 42 mm < 124mm Verificato

6.1.6. Spostamenti DX per effetto della temperatura

La variazione termica prevista a progetto determina delle dilatazioni lungo la direzione preferenziale del ponte di una certa importanza. Grazie alla specifica nautura dei vincoli progettati, l'impalcato risulta libero di dilatare in funzione delle variazioni termiche. Si riporta di seguito il massimo delta di lunghezza legato a tali variazioni.

Straus7 Release 2.3.7 [Licenced to:IPE PROGETTI SRL - TORINO]

L'impalcato subisce una variazione di lunghezza pari a +16mm / -30mm

Si prevedono nei giunti di base asole longitudinali di ampiezza +/- 50 mm

Trasversalmente invece, ove previste si prevedono asole di +/- 4mm poiché la dilatazione in senso trasversale è nettamente meno significativa.

6.2. VERIFICA EFFETTI DINAMICI

Il ponte in progetto risulta essere caratterizzato da una struttura molto snella e sottile.

Esso quindi è pertanto potenzialmente soggetto a fenomeni dinamici legati al probabile pericolo di innesco di fenomeni di risonanza causati da vibrazioni indotte dal traffico pedonale o dal fluttering legato al distaccamento dei vortici del vento. Tali fenomeni sono caratterizzati da una frequenza forzante estera causata dal passo dei pedoni o dal distacco alternato di vortici fluidi dell'aria durante le folate di vento, e, qualora tali frequenze corrispondessero con le frequenze proprie della struttura (modi propri vibrazionali) si possono innescare dei fenomeni di risonanza in grado di amplificare in modo esponenziale gli spostamenti della struttura causandone un disagio per gli utenti diminuendo drasticamente le condizioni di comfort per fino adiirittura all'inutilizzabilità del manufatto.

Di seguito si riportano le verifiche e le considerazioni in merito a tali fenomeni.

6.2.1. Verifica frequenza di vibrazione per carico pedonale

In base a quanto reperito dalle diverse normative europee e ai dati in letteratura si individuano i seguenti range di frequenza potenzialemnte rischiosi per l'insorgere del fenomeno della risonanza:

Range per modi verticali 2 <> 3 Hz
Range per modi orizzontali > 1.5 Hz

Inoltre si tenga presente che un corridore che percorre il ponte con passo cadenzato è in grado di generare una frequenza verticale limite pari a **3.3 Hz.**

Dll'analisi modale si individuano i seguenti modi di vibrare significativi in termini di massa movimetata

Mode Frequency Modal Mass PF-X PF-Y PF-Y (Hz) (Engineering) (%) (%) (%) 1 1.320E+00 3.007E+03 0.000 8.728 0.0 2 1.331E+00 2.954E+03 0.000 7.895 0.0 3 2.095E+00 1.270E+04 0.000 53.457 0.0	
1 1.320E+00 3.007E+03 0.000 8.728 0.0 2 1.331E+00 2.954E+03 0.000 7.895 0.0 3 2.095E+00 1.270E+04 0.000 53.457 0.0	Z
2 1.331E+00 2.954E+03 0.000 7.895 0.0 3 2.095E+00 1.270E+04 0.000 53.457 0.0)
3 2.095E+00 1.270E+04 0.000 53.457 0.0	
4 3.355E+00 9.767E+03 0.089 0.000 0.7	
5 3.507E+00 9.817E+03 0.005 0.000 58.4	
6 3.646E+00 5.569E+03 0.006 0.000 6.6	
7 4.472E+00 6.862E+03 0.000 0.055 0.0	
8 4.475E+00 7.119E+03 0.000 0.001 0.0	
9 5.196E+00 1.716E+03 4.161 0.000 0.0	
10 5.202E+00 1.716E+03 0.000 0.000 0.0	15
45 1.301E+01 4.090E+04 2.310 0.614 0.0	
46 1.322E+01 1.799E+07 0.065 0.000 0.0	
47 1.322E+01 2.593E+04 45.124 0.003 0.0	
48 1.327E+01 5.544E+05 0.274 0.006 0.0	
49 1.330E+01 2.321E+05 0.032 0.000 0.0	00

1° modo verticale significativo	3.51 Hz	> 3.3 Hz	Verificato
1° modo orizzontale trasversale significativo	2.10 Hz	> 1.5 Hz	Verificato
1° modo orizzontale longitudinale significativo	13.22 Hz	> 1.5 Hz	Verificato

6.2.2. Verifica fenomeno del fluttering

In funzione a quanto prescritto dalla Circolare esplicativa del 2019 si individua la velocità critica in funzione della frequenza propria di vibrazione della struttura in senso trasversale secondo la formula:

$$Vcr = n_i x b / St$$

Con ni = i-esimo modo di vibrare in direzione trasversale all'azione del vento

b = dimensione di riferimento della sezione trasversale dell'impalcato

St = Numero di Strouhal = 0.1 per le sezioni a spigoli vivi

Tale velocità critica rappresenta il limite minimo di velocità media oltre la quale è probabile l'insorgenza di vortici dannosi pertanto la verifica è soddisfatta se

Vcr < V_{ml} (velocità media corrispondente a T_R = 10 x T_{r prog})

Altro parametro indice di probabilità di distacco dei vortici è il controllo del numero di Scruton definito dalla seguente formula:

$$Sc = 4\pi \times m \times \xi / (\rho \times b^2)$$

Con m = massa dell'impalcato per unità di lunghezza (25.000/74 = 338kg/m)

 ξ = coefficiente di smorzamento strutturale (0.05)

ρ = densità dell'aria (convenzionalmente assunto 1.25 kg/mc)

Quanto più alto è il numero di Scruton tanto minore è la probabilità di insorgenza del fenomeno. Il limite

numerico di sicurezza è il seguente:

Nel nostro caso risulta quanto segue:

 $V_{ml} = 28.08 \text{ m/sec}$

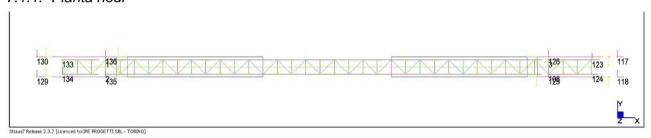
 $Vcr = 2.1 Hz \times 0.6 m / 0.1 =$ **12.6 m/sec < V**_{ml}

Verificato

$$Sc = 4\pi \times 338 \times 0.05 / (1.25 \times 0.6^2) = 472$$
 >> 30

Verificato

7. INTERFACCE CON LE FONDAZIONI


In questo paragrafo riportiamo la progettazione e la verifica dei giunti di base della struttura principale.

7.1. REAZIONI VINCOLARI NEL SISTEMA DI RIFERIMENTO GLOBALE

Nelle seguenti due tabelle vengono mostrati i valori massimi e minimi delle reazioni vincolari (Rx, Ry, Rz), registrate per tutti gli 8+8 punti di vincolo, nelle combinazioni SLU SLE e SLV oltre che nei singoli casi di carico. Tali reazioni sono riferite al sistema di riferimento globale.

Si specifica che i valori mostrati sono le reazioni vincolari applicate dalla fondazione alla struttura d'acciaio come risposta alle forze provenienti dalla struttura stessa. (Ad esempio un segno Z positivo significa che la struttura in acciaio applica una forza di compressione alla fondazione e un segno Z negativo significa che la struttura in acciaio applica una forza di trazione alla fondazione).

7.1.1. Pianta nodi

7.1.2. Reazioni vincolari per casi di carico

	FX	FY	FZ	MX	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
Node 1: 1: Peso Proprio	0	0	19	0	0	0
Node 1: 2: Permanenti	0	0	8	0	0	0
Node 1: 3: Vento Y	0	-194	-8	0	0	0
Node 1: 4: VAR DX	0	2	19	0	0	0
Node 1: 5: VAR SX	0	-2	69	0	0	0
Node 1: 6: DT+	0	-2	-5	0	0	0
Node 1: 7: DT-	0	3	-24	0	0	0
Node 2: 1: Peso Proprio	0	0	19	0	0	0
Node 2: 2: Permanenti	0	0	8	0	0	0
Node 2: 3: Vento Y	0	0	-11	0	0	0
Node 2: 4: VAR DX	0	0	69	0	0	0
Node 2: 5: VAR SX	0	0	19	0	0	0
Node 2: 6: DT+	0	0	-5	0	0	0
Node 2: 7: DT-	0	0	-24	0	0	0
Node 3: 1: Peso Proprio	0	0	19	0	0	0
Node 3: 2: Permanenti	0	0	8	0	0	0
Node 3: 3: Vento Y	0	0	-8	0	0	0
Node 3: 4: VAR DX	0	0	18	0	0	0
Node 3: 5: VAR SX	0	0	68	0	0	0
Node 3: 6: DT+	0	0	-10	0	0	0
Node 3: 7: DT-	0	0	-13	0	0	0
Node 108: 1: Peso Proprio	0	0	19	0	0	0
Node 108: 2: Permanenti	0	0	8	0	0	0
Node 108: 3: Vento Y	0	-140	-11	0	0	0
Node 108: 4: VAR DX	0	1	68	0	0	0
Node 108: 5: VAR SX	0	-1	18	0	0	0
Node 108: 6: DT+	0	6	-10	0	0	0
Node 108: 7: DT-	0	-10	-13	0	0	0
Node 117: 1: Peso Proprio	81	0	-67	0	0	0
Node 117: 2: Permanenti	47	0	-43	0	0	0

Node 117: 3: Vento Y	9	-3	-8	0	0	0
Node 117: 4: VAR DX	84	0	-77	0	0	0
Node 117: 5: VAR SX	165	0	-152	0	0	0
Node 117: 6: DT+	12	0	-11	0	0	0
Node 117: 7: DT-	0	0	0	0	0	0
Node 118: 1: Peso Proprio	81	0	-67	0	0	0
Node 118: 2: Permanenti	47	0	-43	0	0	0
Node 118: 3: Vento Y	5	-4	-5	0	0	0
		-		_	_	_
Node 118: 4: VAR DX	165	0	-152	0	0	0
Node 118: 5: VAR SX	84	0	-77	0	0	0
Node 118: 6: DT+	12	0	-11	0	0	0
Node 118: 7: DT-	0	0	0	0	0	0
Node 123: 1: Peso Proprio	0	0	2	0	0	0
Node 123: 2: Permanenti	0	0	3	0	0	0
Node 123: 3: Vento Y	-232	41	6	0	0	0
Node 123: 4: VAR DX	5	-1	1	0	0	0
Node 123: 5: VAR SX	-5	1	-7	0	0	0
Node 123: 6: DT+	-20	-5	7	0	0	0
Node 123: 7: DT-	42	10	9	0	0	0
Node 124: 1: Peso Proprio	0	0	2	0	0	0
Node 124: 2: Permanenti	0	0	3	0	0	0
Node 124: 2: Permanenti Node 124: 3: Vento Y	232	0	7	0	0	0
Node 124: 4: VAR DX	-6	0	-7	0	0	0
					_	
Node 124: 5: VAR SX	5	0	1	0	0	0
Node 124: 6: DT+	5	0	7	0	0	0
Node 124: 7: DT-	-4	0	9	0	0	0
Node 125: 1: Peso Proprio	-30	0	124	0	0	0
Node 125: 2: Permanenti	-16	0	63	0	0	0
Node 125: 3: Vento Y	10	-9	-43	0	0	0
Node 125: 4: VAR DX	-55	0	221	0	0	0
Node 125: 5: VAR SX	-28	0	112	0	0	0
Node 125: 6: DT+	-4	0	15	0	0	0
Node 125: 7: DT-	0	0	0	0	0	0
Node 126: 1: Peso Proprio	-30	0	124	0	0	0
Node 126: 2: Permanenti	-16	0	63	0	0	0
Node 126: 3: Vento Y	-15	-8	62	0	0	0
Node 126: 4: VAR DX	-28	0	112	0	0	0
Node 126: 5: VAR SX	-55	0	221	0	0	0
Node 126: 6: DT+	-4	0	15	0	0	0
Node 126: 7: DT-	0	0	0	0	0	0
	_		_		· · · · · ·	
Node 129: 1: Peso Proprio	-81	0	-66	0	0	0
Node 129: 2: Permanenti	-47	0	-43	0	0	0
Node 129: 3: Vento Y	-5	-4	-5	0	0	0
Node 129: 4: VAR DX	-164	0	-152	0	0	0
Node 129: 5: VAR SX	-83	0	-77	0	0	0
Node 129: 6: DT+	0	0	0	0	0	0
Node 129: 7: DT-	-28	0	-26	0	0	0
Node 130: 1: Peso Proprio	-81	0	-66	0	0	0
Node 130: 2: Permanenti	-47	0	-43	0	0	0
Node 130: 3: Vento Y	-10	-3	-9	0	0	0
Node 130: 4: VAR DX	-83	0	-77	0	0	0
Node 130: 5: VAR SX	-164	0	-152	0	0	0
Node 130: 6: DT+	0	0	0	0	0	0
Node 130: 7: DT-	-28	0	-26	0	0	0
Node 133: 1: Peso Proprio	0	0	2	0	0	0
Node 133: 1: Peso Proprio	0	0	3	0	0	0
Node 133: 2: Permanenti Node 133: 3: Vento Y	0	0	6	0	0	0
		0			0	
Node 133: 4: VAR DX	0		1	0		0
Node 133: 5: VAR SX	0	0	-7	0	0	0
Node 133: 6: DT+	0	0	4	0	0	0
Node 133: 7: DT-	0	0	16	0	0	0
Node 134: 1: Peso Proprio	0	0	2	0	0	0
Node 134: 2: Permanenti	0	0	3	0	0	0
Node 134: 3: Vento Y	0	98	7	0	0	0

Node 134: 4: VAR DX	0	-2	-7	0	0	0
Node 134: 5: VAR SX	0	2	1	0	0	0
Node 134: 6: DT+	0	2	4	0	0	0
Node 134: 7: DT-	0	-3	16	0	0	0
Node 135: 1: Peso Proprio	30	0	124	0	0	0
Node 135: 2: Permanenti	16	0	62	0	0	0
Node 135: 3: Vento Y	-10	-9	-43	0	0	0
Node 135: 4: VAR DX	55	0	220	0	0	0
Node 135: 5: VAR SX	28	0	111	0	0	0
Node 135: 6: DT+	0	0	0	0	0	0
Node 135: 7: DT-	9	0	37	0	0	0
Node 136: 1: Peso Proprio	30	0	124	0	0	0
Node 136: 2: Permanenti	16	0	62	0	0	0
Node 136: 3: Vento Y	15	-8	62	0	0	0
Node 136: 4: VAR DX	28	0	111	0	0	0
Node 136: 5: VAR SX	55	0	220	0	0	0
Node 136: 6: DT+	0	0	0	0	0	0
Node 136: 7: DT-	9	0	37	0	0	0

7.1.3. Reazioni vincolari SLE

	FX	FY	FZ	MX	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
Node 1: 8: SLE full	0	0	144	0	0	0
Node 1: 9: SLEr T1+	0	-119	148	0	0	0
Node 1: 10: SLEr T1-	0	-116	134	0	0	0
Node 1: 11: SLEr T2+	0	-117	70	0	0	0
Node 1: 12: SLEr T2-	0	-113	56	0	0	0
Node 1: 13: SLEr T3+	0	-119	63	0	0	0
Node 1: 14: SLEr T3-	0	-116	49	0	0	0
Node 1: 15: SLEr T4+	0	-116	110	0	0	0
Node 1: 16: SLEr T4-	0	-113	96	0	0	0
Node 1: 17: SLEr T5+	0	-118	153	0	0	0
Node 1: 18: SLEr T5-	0	-115	139	0	0	0
Node 1: 19: SLEr V+	0	-196	43	0	0	0
Node 1: 20: SLEr V-	0	-193	29	0	0	0
Node 1: 21: SLEr DT+	0	-119	46	0	0	0
Node 1: 22: SLEr DT-	0	-114	22	0	0	0
Node 1: 23: SLEf V+	0	-40	42	0	0	0
Node 1: 24: SLEf V-	0	-37	30	0	0	0
Node 1: 25: SLEf DT+	0	-1	42	0	0	0
Node 1: 26: SLEf DT-	0	2	28	0	0	0
Node 1: 27: SLEqp	0	0	37	0	0	0
Node 2: 8: SLE full	0	0	144	0	0	0
Node 2: 9: SLEr T1+	0	0	150	0	0	0
Node 2: 10: SLEr T1-	0	0	135	0	0	0
Node 2: 11: SLEr T2+	0	0	121	0	0	0
Node 2: 12: SLEr T2-	0	0	106	0	0	0
Node 2: 13: SLEr T3+	0	0	64	0	0	0
Node 2: 14: SLEr T3-	0	0	48	0	0	0
Node 2: 15: SLEr T4+	0	0	82	0	0	0
Node 2: 16: SLEr T4-	0	0	66	0	0	0
Node 2: 17: SLEr T5+	0	0	155	0	0	0
Node 2: 18: SLEr T5-	0	0	140	0	0	0
Node 2: 19: SLEr V+	0	0	42	0	0	0
Node 2: 20: SLEr V-	0	0	27	0	0	0
Node 2: 21: SLEr DT+	0	0	46	0	0	0
Node 2: 22: SLEr DT-	0	0	21	0	0	0
Node 2: 23: SLEf V+	0	0	42	0	0	0
Node 2: 24: SLEf V-	0	0	29	0	0	0
Node 2: 25: SLEf DT+	0	0	42	0	0	0
Node 2: 26: SLEf DT-	0	0	28	0	0	0
Node 2: 27: SLEqp	0	0	37	0	0	0

Node 3: 8: SLE full	0	0	144	0	0	0
Node 3: 9: SLEr T1+	0	0	142	0	0	0
Node 3: 10: SLEr T1-	0	0	144	0	0	0
	_				-	
Node 3: 11: SLEr T2+	0	0	64	0	0	0
Node 3: 12: SLEr T2-	0	0	67	0	0	0
Node 3: 13: SLEr T3+	0	0	57	0	0	0
Node 3: 14: SLEr T3-	0	0	59	0	0	0
Node 3: 15: SLEr T4+	0	0	104	0	0	0
Node 3: 16: SLEr T4-	0	0	107	0	0	0
Node 3: 10: SLET T4-	_			_	_	_
	0	0	32	0	0	0
Node 3: 18: SLEr T5-	0	0	34	0	0	0
Node 3: 19: SLEr V+	0	0	37	0	0	0
Node 3: 20: SLEr V-	0	0	39	0	0	0
Node 3: 21: SLEr DT+	0	0	36	0	0	0
Node 3: 22: SLEr DT-	0	0	40	0	0	0
Node 3: 23: SLEf V+	0	0	36	0	0	0
Node 3: 24: SLEf V-	0	0	38	0	0	0
	_				-	
Node 3: 25: SLEf DT+	0	0	36	0	0	0
Node 3: 26: SLEf DT-	0	0	39	0	0	0
Node 3: 27: SLEqp	0	0	37	0	0	0
Node 108: 8: SLE full	0	0	144	0	0	0
Node 108: 9: SLEr T1+	0	-82	144	0	0	0
Node 108: 10: SLEr T1-	0	-91	146	0	0	0
Node 108: 10: SEE T1	0	-80	115	0	0	0
Node 108: 11: 3EE 12+ Node 108: 12: SLEr T2-	0	-90		_	0	0
	_		117	0	-	_
Node 108: 13: SLEr T3+	0	-81	57	0	0	0
Node 108: 14: SLEr T3-	0	-91	59	0	0	0
Node 108: 15: SLEr T4+	0	-80	75	0	0	0
Node 108: 16: SLEr T4-	0	-90	78	0	0	0
Node 108: 17: SLEr T5+	0	-83	31	0	0	0
Node 108: 18: SLEr T5-	0	-93	34	0	0	0
Node 108: 19: SLEr V+	0	-137	36	0	0	0
	_			_	-	_
Node 108: 20: SLEr V-	0	-147	38	0	0	0
Node 108: 21: SLEr DT+	0	-79	35	0	0	0
Node 108: 22: SLEr DT-	0	-95	40	0	0	0
Node 108: 23: SLEf V+	0	-25	36	0	0	0
Node 108: 24: SLEf V-	0	-33	38	0	0	0
Node 108: 25: SLEf DT+	0	3	36	0	0	0
Node 108: 26: SLEf DT-	0	-6	39	0	0	0
Node 108: 27: SLEqp	0	0	37	0	0	0
'				-		_
Node 117: 8: SLE full	354	0	-318	0	0	0
Node 117: 9: SLEr T1+	362	-3	-326	0	0	0
Node 117: 10: SLEr T1-	344	-3	-308	0	0	0
Node 117: 11: SLEr T2+	205	-2	-181	0	0	0
Node 117: 12: SLEr T2-	187	-2	-164	0	0	0
Node 117: 13: SLEr T3+	305	-3	-273	0	0	0
Node 117: 14: SLEr T3-	287	-3	-256	0	0	0
Node 117: 14: SEE: 13	226	-2	-200	0	0	0
Node 117: 13: 3EEF 14-	208	-2 -2	-183	0	0	0
					-	
Node 117: 17: SLEr T5+	153	-2	-133	0	0	0
Node 117: 18: SLEr T5-	135	-2	-117	0	0	0
Node 117: 19: SLEr V+	129	-3	-111	0	0	0
Node 117: 20: SLEr V-	111	-3	-94	0	0	0
Node 117: 21: SLEr DT+	132	-2	-113	0	0	0
Node 117: 22: SLEr DT-	103	-2	-87	0	0	0
Node 117: 23: SLEf V+	126	-1	-108	0	0	0
Node 117: 23: SEEF V-		-1		_	0	0
	112		-95	0		
Node 117: 25: SLEf DT+	126	0	-108	0	0	0
Node 117: 26: SLEf DT-	109	0	-93	0	0	0
Node 117: 27: SLEqp	120	0	-103	0	0	0
Node 118: 8: SLE full	354	0	-318	0	0	0
Node 118: 9: SLEr T1+	358	-4	-322	0	0	0
Node 118: 10: SLEr T1-	340	-4	-305	0	0	0
Node 118: 11: SLEr T2+	282	-3	-252	0	0	0
Node 118: 12: SLEr T2-	264	-3	-235	0	0	0
1400C 110. 12. JLLI 12-	204	-3	-233	U	U	U

Node 118: 13: SLEr T3+	303	-4	-271	0	0	0
Node 118: 14: SLEr T3-	285	-4	-254	0	0	0
Node 118: 15: SLEr T4+	261	-3	-232	0	0	0
Node 118: 15: 3LEr 14-	243	-3 -3	-232	0	0	0
Node 118: 16: 3LEr 14-		-3		_	-	0
	150		-130	0	0	_
Node 118: 18: SLEr T5-	132	-3	-113	0	0	0
Node 118: 19: SLEr V+	124	-5	-106	0	0	0
Node 118: 20: SLEr V-	107	-5	-90	0	0	0
Node 118: 21: SLEr DT+	129	-3	-110	0	0	0
Node 118: 22: SLEr DT-	100	-3	-84	0	0	0
Node 118: 23: SLEf V+	125	-1	-107	0	0	0
Node 118: 24: SLEf V-	111	-1	-94	0	0	0
Node 118: 25: SLEf DT+	126	0	-108	0	0	0
Node 118: 26: SLEf DT-	109	0	-92	0	0	0
Node 118: 27: SLEqp	120	0	-103	0	0	0
Node 123: 8: SLE full	-1	0	-21	0	0	0
Node 123: 9: SLEr T1+	-161	22	-21	0	0	0
Node 123: 9: SLET 11-	-101	31	-21	0	0	0
Node 123: 11: SLEr T2+	-156 103	20	-7 0	0	0	0
Node 123: 12: SLEr T2-	-103	30	-8	0	0	0
Node 123: 13: SLEr T3+	-160	21	9	0	0	0
Node 123: 14: SLEr T3-	-107	31	8	0	0	0
Node 123: 15: SLEr T4+	-154	20	-21	0	0	0
Node 123: 16: SLEr T4-	-100	29	-21	0	0	0
Node 123: 17: SLEr T5+	-32	23	1	0	0	0
Node 123: 18: SLEr T5-	21	32	0	0	0	0
Node 123: 19: SLEr V+	-251	38	-2	0	0	0
Node 123: 20: SLEr V-	-200	47	-2	0	0	0
Node 123: 21: SLEr DT+	-170	19	-1	0	0	0
Node 123: 22: SLEr DT-	-85	34	-2	0	0	0
Node 123: 23: SLEf V+	-62	5	-1	0	0	0
Node 123: 24: SLEf V-	-19	13	-2	0	0	0
Node 123: 25: SLEf DT+	-18	-3	-1	0	0	0
Node 123: 26: SLEf DT-	33	6	-2	0	0	0
Node 123: 27: SLEqp	0	0	-1	0	0	0
Node 124: 8: SLE full	-1	0	-21	0	0	0
Node 124: 8: SLEr T1+	137	0	-20	0	0	0
Node 124: 9: SLET T1-	146	0	-20 -21	0	0	0
Node 124: 10: SLET T1- Node 124: 11: SLET T2+			-21 -14	_	0	0
	132	0		0 0	0	_
Node 124: 12: SLEr T2-	142	0	-15		_	0
Node 124: 13: SLEr T3+	136	0	10	0	0	0
Node 124: 14: SLEr T3-	145	0	9	0	0	0
Node 124: 15: SLEr T4+	130	0	-1	0	0	0
Node 124: 16: SLEr T4-	139	0	-2	0	0	0
Node 124: 17: SLEr T5+	253	0	2	0	0	0
Node 124: 18: SLEr T5-	262	0	1	0	0	0
Node 124: 19: SLEr V+	230	0	-1	0	0	0
Node 124: 20: SLEr V-	237	0	-2	0	0	0
Node 124: 21: SLEr DT+	135	0	-1	0	0	0
Node 124: 22: SLEr DT-	148	0	-2	0	0	0
Node 124: 23: SLEf V+	44	0	-1	0	0	0
Node 124: 24: SLEf V-	50	0	-2	0	0	0
Node 124: 25: SLEf DT+	-3	0	-1	0	0	0
Node 124: 26: SLEf DT-	4	0	-2	0	0	0
Node 124: 27: SLEqp	0	0	-1	0	0	0
Node 125: 8: SLE full	-122	0	488	0	0	0
Node 125: 9: SLEr T1+	-115	-4	462	0	0	0
Node 125: 9: SLET 11-	-113	-4	438	0	0	0
Node 125: 10: SLET T1-	-109	-4 -4	362	0	0	0
Node 125: 11: SLEr T2-	-90 -84			0	0	0
		-4	338		_	
Node 125: 13: SLEr T3+	-97	-4	388	0	0	0
Node 125: 14: SLEr T3-	-91	-4	365	0	0	0
Node 125: 15: SLEr T4+	-83	-4	333	0	0	0
Node 125: 16: SLEr T4-	-77	-4	309	0	0	0
Node 125: 17: SLEr T5+	-46	-5	185	0	0	0

Node 125: 18: SLEr T5-	-40	-5	161	0	0	0
Node 125: 19: SLEr V+	-32	-8	130	0	0	0
Node 125: 20: SLEr V-	-26	-8	107	0	0	0
				_	_	
Node 125: 21: SLEr DT+	-39	-5 -	157	0	0	0
Node 125: 22: SLEr DT-	-29	-5	120	0	0	0
Node 125: 23: SLEf V+	-42	-2	173	0	0	0
Node 125: 24: SLEf V-	-38	-2	154	0	0	0
Node 125: 25: SLEf DT+	-45	0	185	0	0	0
Node 125: 26: SLEf DT-	-40	0	162	0	0	0
Node 125: 27: SLEqp	-43	0	177	0	0	0
Node 126: 8: SLE full	-122	0	488	0	0	0
				_	-	_
Node 126: 9: SLEr T1+	-133	-3	532	0	0	0
Node 126: 10: SLEr T1-	-126	-3	507	0	0	0
Node 126: 11: SLEr T2+	-79	-4	321	0	0	0
Node 126: 12: SLEr T2-	-73	-4	296	0	0	0
Node 126: 13: SLEr T3+	-113	-3	455	0	0	0
Node 126: 14: SLEr T3-	-107	-3	430	0	0	0
Node 126: 15: SLEr T4+	-86	-4	349	0	0	0
				_	-	
Node 126: 16: SLEr T4-	-80	-4	325	0	0	0
Node 126: 17: SLEr T5+	-62	-4	252	0	0	0
Node 126: 18: SLEr T5-	-56	-4	227	0	0	0
Node 126: 19: SLEr V+	-59	-7	239	0	0	0
Node 126: 20: SLEr V-	-53	-7	216	0	0	0
Node 126: 21: SLEr DT+	-55	-4	223	0	0	0
Node 126: 22: SLEr DT-	-45	-4	184	0	0	0
Node 126: 23: SLEf V+	-48	-1	194	0	0	0
				_	-	_
Node 126: 24: SLEf V-	-43	-1	175	0	0	0
Node 126: 25: SLEf DT+	-45	0	185	0	0	0
Node 126: 26: SLEf DT-	-40	0	162	0	0	0
Node 126: 27: SLEqp	-43	0	177	0	0	0
Node 129: 8: SLE full	-352	0	-316	0	0	0
Node 129: 9: SLEr T1+	-340	-4	-305	0	0	0
Node 129: 10: SLEr T1-	-369	-4	-331	0	0	0
Node 129: 11: SLEr T2+	-265	-3	-236	0	0	0
Node 129: 11: SEE 12+		_		_	-	
	-293	-4	-262	0	0	0
Node 129: 13: SLEr T3+	-285	-4	-254	0	0	0
Node 129: 14: SLEr T3-	-312	-4	-280	0	0	0
Node 129: 15: SLEr T4+	-244	-3	-217	0	0	0
Node 129: 16: SLEr T4-	-271	-3	-242	0	0	0
Node 129: 17: SLEr T5+	-317	-4	-284	0	0	0
Node 129: 18: SLEr T5-	-344	-4	-309	0	0	0
Node 129: 19: SLEr V+	-108	-5	-92	0	0	0
Node 129: 20: SLEr V-	-134	-5	-115	0	0	0
Node 129: 21: SLEr DT+	-103	-3	-87	0	0	0
Node 129: 22: SLEr DT-	-146	-3	-127	0	0	0
Node 129: 23: SLEf V+	-111	-1	-95	0	0	0
Node 129: 24: SLEf V-	-134	-1	-115	0	0	0
Node 129: 25: SLEf DT+	-110	0	-94	0	0	0
Node 129: 26: SLEf DT-	-137	0	-118	0	0	0
Node 129: 27: SLEqp	-120	0	-102	0	0	0
Node 130: 8: SLE full	-352	0	-316	0	0	0
Node 130: 8: SLE Tull Node 130: 9: SLEr T1+	-344	-3	-308	0	0	0
Node 130: 10: SLEr T1-	-374	-3	-336	0	0	0
Node 130: 11: SLEr T2+	-187	-2	-164	0	0	0
Node 130: 12: SLEr T2-	-216	-2	-191	0	0	0
Node 130: 13: SLEr T3+	-286	-3	-256	0	0	0
Node 130: 14: SLEr T3-	-316	-3	-283	0	0	0
Node 130: 15: SLEr T4+	-208	-2	-184	0	0	0
Node 130: 16: SLEr T4-	-237	-2	-211	0	0	0
Node 130: 10: SEE 14-	-319	-3	-211	0	0	0
Node 130: 17: SLET T5-						
	-349	-3	-313	0	0	0
Node 130: 19: SLEr V+	-112	-3	-95	0	0	0
Node 130: 20: SLEr V-	-141	-3	-121	0	0	0
Node 130: 21: SLEr DT+	-105	-2	-89	0	0	0
Node 130: 22: SLEr DT-	-151	-2	-131	0	0	0

Node 130: 23: SLEf V+	-112	-1	-95	0	0	0
Node 130: 24: SLEf V-	-135	-1	-116	0	0	0
Node 130: 25: SLEf DT+	-110	0	-93	0	0	0
Node 130: 25: SLEF DT-	-137	0	-118	0	0	0
					_	
Node 130: 27: SLEqp	-120	0	-102	0	0	0
Node 133: 8: SLE full	0	0	-21	0	0	0
Node 133: 9: SLEr T1+	0	0	-25	0	0	0
Node 133: 10: SLEr T1-	0	0	-15	0	0	0
Node 133: 11: SLEr T2+	0	0	-11	0	0	0
Node 133: 12: SLEr T2-	0	0	-2	0	0	0
Node 133: 12: 5EEr T2	0	0	5	0	0	0
	_	_		_	_	_
Node 133: 14: SLEr T3-	0	0	14	0	0	0
Node 133: 15: SLEr T4+	0	0	-24	0	0	0
Node 133: 16: SLEr T4-	0	0	-15	0	0	0
Node 133: 17: SLEr T5+	0	0	-27	0	0	0
Node 133: 18: SLEr T5-	0	0	-18	0	0	0
Node 133: 19: SLEr V+	0	0	-5	0	0	0
Node 133: 20: SLEr V-	0	0	4	0	0	0
		_		_	•	_
Node 133: 21: SLEr DT+	0	0	-7	0	0	0
Node 133: 22: SLEr DT-	0	0	8	0	0	0
Node 133: 23: SLEf V+	0	0	-4	0	0	0
Node 133: 24: SLEf V-	0	0	3	0	0	0
Node 133: 25: SLEf DT+	0	0	-5	0	0	0
Node 133: 26: SLEf DT-	0	0	4	0	0	0
Node 133: 27: SLEgp	0	0	-1	0	0	0
Node 134: 8: SLE full	0	0	-21	0	0	0
Node 134: 9: SLEr T1+	0	61	-24	0	0	0
	_	_		_	_	_
Node 134: 10: SLEr T1-	0	58	-15	0	0	0
Node 134: 11: SLEr T2+	0	59	-18	0	0	0
Node 134: 12: SLEr T2-	0	56	-9	0	0	0
Node 134: 13: SLEr T3+	0	61	6	0	0	0
Node 134: 14: SLEr T3-	0	58	15	0	0	0
Node 134: 15: SLEr T4+	0	58	-5	0	0	0
Node 134: 16: SLEr T4-	0	55	4	0	0	0
Node 134: 17: SLEr T5+	0	60	-26	0	0	0
	_		_		_	-
Node 134: 18: SLEr T5-	0	58	-17	0	0	0
Node 134: 19: SLEr V+	0	100	-4	0	0	0
Node 134: 20: SLEr V-	0	97	5	0	0	0
Node 134: 21: SLEr DT+	0	61	-7	0	0	0
Node 134: 22: SLEr DT-	0	56	9	0	0	0
Node 134: 23: SLEf V+	0	21	-4	0	0	0
Node 134: 24: SLEf V-	0	18	4	0	0	0
Node 134: 25: SLEf DT+	0	1	-5	0	0	0
Node 134: 26: SLEf DT-	0	-2	4		0	0
	_			0	_	
Node 134: 27: SLEqp	0	0	-1	0	0	0
Node 135: 8: SLE full	121	0	487	0	0	0
Node 135: 9: SLEr T1+	110	-4	439	0	0	0
Node 135: 10: SLEr T1-	119	-4	476	0	0	0
Node 135: 11: SLEr T2+	84	-4	339	0	0	0
Node 135: 12: SLEr T2-	93	-4	376	0	0	0
Node 135: 13: SLEr T3+	91	-4	365	0	0	0
Node 135: 14: SLEr T3-	100	-4	401	0	0	0
Node 135: 14: 5EE T3-	77	-4	311	0	0	0
Node 135: 16: SLEr T4-	86	-4	347	0	0	0
Node 135: 17: SLEr T5+	102	-4	408	0	0	0
Node 135: 18: SLEr T5-	111	-4	444	0	0	0
Node 135: 19: SLEr V+	27	-8	110	0	0	0
Node 135: 20: SLEr V-	35	-8	143	0	0	0
Node 135: 21: SLEr DT+	30	-5	123	0	0	0
Node 135: 22: SLEr DT-	44	-5	181	0	0	0
Node 135: 23: SLEf V+	38	-2	155	0	0	0
Node 135: 24: SLEf V-	45	-2	184	0	0	0
Node 135: 25: SLEf DT+	40	0	164	0	0	0
Node 135: 26: SLEf DT-	49	0	199	0	0	0
Node 135: 27: SLEqp	43	0	176	0	0	0

Node 136: 8: SLE full	121	0	487	0	0	0
Node 136: 9: SLEr T1+	126	-3	507	0	0	0
Node 136: 10: SLEr T1-	136	-3	547	0	0	0
Node 136: 11: SLEr T2+	73	-4	297	0	0	0
Node 136: 12: SLEr T2-	83	-4	336	0	0	0
Node 136: 13: SLEr T3+	107	-4	430	0	0	0
Node 136: 14: SLEr T3-	117	-3	469	0	0	0
Node 136: 15: SLEr T4+	81	-4	326	0	0	0
Node 136: 16: SLEr T4-	90	-4	364	0	0	0
Node 136: 17: SLEr T5+	118	-3	474	0	0	0
Node 136: 18: SLEr T5-	128	-3	513	0	0	0
Node 136: 19: SLEr V+	53	-7	217	0	0	0
Node 136: 20: SLEr V-	63	-7	255	0	0	0
Node 136: 21: SLEr DT+	46	-4	187	0	0	0
Node 136: 22: SLEr DT-	61	-4	249	0	0	0
Node 136: 23: SLEf V+	43	-1	177	0	0	0
Node 136: 24: SLEf V-	51	-1	207	0	0	0
Node 136: 25: SLEf DT+	40	0	164	0	0	0
Node 136: 26: SLEf DT-	49	0	199	0	0	0
Node 136: 27: SLEqp	43	0	176	0	0	0

7.1.4. Reazioni vincolari SLU

Node 1: 28: SLU 1/6		FX	FY	FZ	MX	MY	MZ
Node 1: 29: SLU2/3/4/5		(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
Node 1: 30: SLU2/3	Node 1: 28: SLU 1/6	0	0	79	0	0	0
Node 1: 31: SLU 4/5	Node 1: 29: SLU2/3/4/5	0	0	178	0	0	0
Node 1: 32: slu FULL_DX	Node 1: 30: SLU2/3	0	0	185	0	0	0
Node 1: 33: SLU 1/6 DX	Node 1: 31: SLU 4/5	0	-178	51	0	0	0
Node 1: 34: SLU2/3/4/5 DX	Node 1: 32: slu FULL_DX	0	2	95	0	0	0
Node 1: 35: SLU2/3 Node 1: 36: SLU 4/5 Node 1: 36: SLU 4/5 Node 1: 37: Slu Max mez Node 1: 37: Slu Max mez Node 1: 38: Slu Max tors Node 1: 38: Slu Max tors Node 1: 38: Slu Max tors Node 1: 39: Slu Half Node 1: 40: SLU Tf+v Node 1: 40: SLU Tf+v Node 1: 41: SLU V+tf Node 1: 42: SLU V+tmez Node 1: 42: SLU V+tmez Node 1: 43: SLU V+ttor Node 1: 43: SLU V+ttor Node 1: 44: SLU DT+tf Node 1: 44: SLU DT+tf Node 1: 45: SLU DT-tf Node 2: 28: SLU 1/6 Node 2: 30: SLU2/3/4/5 Node 2: 31: SLU 4/5 Node 2: 31: SLU 4/5 Node 2: 32: Slu FULL_DX Node 2: 33: SLU J/6 Node 2: 34: SLU J/6 Node 2: 35: SLU J/5 Node 2: 35: SLU J/5 Node 2: 35: SLU J/5 Node 2: 36: SLU J/5 Node 2: 37: Slu Max mez Node 2: 36: SLU J/5 Node 2: 37: Slu Max mez Node 2: 38: Slu Max tors Node 2: 39: Slu Half Node 2: 40: SLU T+tv Node 2: 42: SLU V+tf Node 2: 43: SLU V+tf Node 2: 43: SLU V+tf Node 2: 44: SLU V+tf Node 2: 44: SLU DT+tf Node 2: 45: SLU DT+tf Node 3: 28: SLU D/66	Node 1: 33: SLU 1/6 DX	0	-2	151	0	0	0
Node 1: 36: SLU 4/5 Node 1: 37: slu Max mez Node 1: 37: slu Max mez Node 1: 37: slu Max mez Node 1: 38: slu Max tors Node 1: 39: slu Half Node 1: 39: slu Half Node 1: 39: slu Half Node 1: 40: SLU Tf+v Node 1: 40: SLU Tf+v Node 1: 41: SLU V+tf Node 1: 42: SLU V+tmez Node 1: 43: SLU V+ttor Node 1: 43: SLU V+tf Node 1: 43: SLU V+tf Node 1: 43: SLU V+tf Node 1: 44: SLU DT+tf Node 2: 28: SLU 1/6 Node 2: 28: SLU 1/6 Node 2: 30: SLU2/3/4/5 Node 2: 31: SLU 4/5 Node 2: 31: SLU 4/5 Node 2: 32: slu FULL_DX Node 2: 33: SLU 1/6 DX Node 2: 34: SLU/3/4/5 DX Node 2: 35: SLU2/3/4/5 DX Node 2: 36: SLU 4/5 Node 2: 36: SLU 4/5 Node 2: 36: SLU 4/5 Node 2: 37: slu Max mez Node 2: 38: slu Max tors Node 2: 39: slu Half Node 2: 40: SLU Tf+v Node 2: 41: SLU V+ttf Node 2: 44: SLU V+ttf Node 2: 44: SLU V+tf Node 2: 44: SLU DT+tf Node 2: 44: SLU DT+tf Node 2: 44: SLU DT+tf Node 2: 45: SLU DT+tf Node 2: 46: SLU DT+tf Node 2: 46: SLU DT+tf Node	Node 1: 34: SLU2/3/4/5 DX	0	2	106	0	0	0
Node 1: 37: slu Max mez 0	Node 1: 35: SLU2/3	0	-10	88	0	0	0
Node 1: 38: slu Max tors Node 1: 38: slu Max tors 0	Node 1: 36: SLU 4/5	0	10	147	0	0	0
Node 1: 39: slu Half 0 0 207 0 0 0 Node 1: 40: SLU Vff+v 0 -179 198 0 0 0 Node 1: 41: SLU Vff 0 -294 113 0 0 0 Node 1: 42: SLU Vffmez 0 -294 68 0 0 0 Node 1: 43: SLU Vfftor 0 -292 93 0 0 0 Node 1: 43: SLU DT+tf 0 -3 127 0 0 0 Node 2: 28: SLU 1/6 0 0 78 0 0 0 Node 2: 36: SLU2/3/4/5 0 0 178 0 0 0 Node 2: 39: SLU2/3/4/5 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 162 0 0 0 Node 2: 32: Slu V1/6 DX 0 0 166 0 <td>Node 1: 37: slu Max mez</td> <td>0</td> <td>-178</td> <td>85</td> <td>0</td> <td>0</td> <td>0</td>	Node 1: 37: slu Max mez	0	-178	85	0	0	0
Node 1: 40: SLU Tf+v 0 -179 198 0 0 0 Node 1: 41: SLU V+tf 0 -294 113 0 0 0 Node 1: 42: SLU V+tmez 0 -294 68 0 0 0 Node 1: 43: SLU V+ttor 0 -292 93 0 0 0 Node 1: 44: SLU DT+tf 0 -3 127 0 0 0 Node 2: 28: SLU 1/6 0 5 91 0 0 0 Node 2: 29: SLU2/3/4/5 0 0 78 0 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 162 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0	Node 1: 38: slu Max tors	0	-173	148	0	0	0
Node 1: 41: SLU V+tf	Node 1: 39: slu Half	0	0	207	0	0	0
Node 1: 42: SLU V+tmez 0 -294 68 0 0 0 Node 1: 43: SLU V+ttor 0 -292 93 0 0 0 Node 1: 44: SLU DT+tf 0 -3 127 0 0 0 Node 1: 45: SLU DT-tf 0 5 91 0 0 0 Node 2: 28: SLU 1/6 0 0 78 0 0 0 Node 2: 29: SLU2/3/4/5 0 0 178 0 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 162 0 0 0 Node 2: 34: SLU 7/5 0 0 166 0 0 0 Node 2: 34: SLU 7/6 DX 0 0 106 0 0 0 Node 2: 34: SLU 2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU 4/5 0 0 88 0	Node 1: 40: SLU Tf+v	0	-179	198	0	0	0
Node 1: 43: SLU V+ttor 0 -292 93 0 0 0 Node 1: 44: SLU DT+tf 0 -3 127 0 0 0 Node 1: 45: SLU DT-tf 0 5 91 0 0 0 Node 2: 28: SLU 1/6 0 0 78 0 0 0 Node 2: 30: SLU2/3 0 0 178 0 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 50 0 0 0 Node 2: 31: SLU 4/5 0 0 162 0 0 0 Node 2: 31: SLU 1/6 DX 0 0 162 0 0 0 Node 2: 34: SLU 2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 37: Slu Max mez 0 0 85 0 <td< td=""><td>Node 1: 41: SLU V+tf</td><td>0</td><td>-294</td><td>113</td><td>0</td><td>0</td><td>0</td></td<>	Node 1: 41: SLU V+tf	0	-294	113	0	0	0
Node 1: 44: SLU DT+tf 0 -3 127 0 0 Node 1: 45: SLU DT-tf 0 5 91 0 0 Node 2: 28: SLU 1/6 0 0 78 0 0 0 Node 2: 39: SLU2/3/4/5 0 0 178 0 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 50 0 0 0 Node 2: 32: slu FULL_DX 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 162 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU 4/5 0 0 88 0 0 0	Node 1: 42: SLU V+tmez	0	-294	68	0	0	0
Node 1: 45: SLU DT-tf 0 5 91 0 0 Node 2: 28: SLU 1/6 0 0 78 0 0 0 Node 2: 29: SLU2/3/4/5 0 0 178 0 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 50 0 0 0 Node 2: 32: slu FULL_DX 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 106 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU2/3 0 0 88 0 0 0 Node 2: 35: SLU 4/5 0 0 88 0 0 0	Node 1: 43: SLU V+ttor	0	-292	93	0	0	0
Node 2: 28: SLU 1/6 0 0 78 0 0 Node 2: 29: SLU2/3/4/5 0 0 178 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 50 0 0 0 Node 2: 32: Slu FULL_DX 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 106 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 36: SLU 4/5 0 0 88 0 0 0 Node 2: 37: Slu Max mez 0 0 85 0 0 0 Node 2: 39: Slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0	Node 1: 44: SLU DT+tf	0	-3	127	0	0	0
Node 2: 29: SLU2/3/4/5 0 0 178 0 0 Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 50 0 0 0 Node 2: 32: Slu FULL_DX 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 106 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU 4/5 0 0 88 0 0 0 Node 2: 36: SLU 4/5 0 0 88 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0	Node 1: 45: SLU DT-tf	0	5	91	0	0	0
Node 2: 30: SLU2/3 0 0 185 0 0 0 Node 2: 31: SLU 4/5 0 0 50 0 0 0 Node 2: 32: slu FULL_DX 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 106 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU 4/5 0 0 88 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0	Node 2: 28: SLU 1/6	0	0	78	0	0	0
Node 2: 31: SLU 4/5 0 0 50 0 0 Node 2: 32: slu FULL_DX 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 106 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU 4/5 0 0 88 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tff 0 0 68 0 0 0 Node 2: 43: SLU DT+tf 0 0 78 0 0	Node 2: 29: SLU2/3/4/5	0	0	178	0	0	0
Node 2: 32: slu FULL_DX 0 0 162 0 0 0 Node 2: 33: SLU 1/6 DX 0 0 106 0 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 35: SLU 4/5 0 0 88 0 0 0 Node 2: 36: SLU 4/5 0 0 85 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tff 0 0 68 0 0 0 Node 2: 43: SLU DT+tf 0 0 78 0	Node 2: 30: SLU2/3	0	0	185	0	0	0
Node 2: 33: SLU 1/6 DX 0 0 106 0 0 Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 36: SLU 4/5 0 0 88 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 0 78 0 0 0 <	Node 2: 31: SLU 4/5	0	0	50	0	0	0
Node 2: 34: SLU2/3/4/5 DX 0 0 151 0 0 0 Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 36: SLU 4/5 0 0 88 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 0 78 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 32: slu FULL_DX	0	0	162	0	0	0
Node 2: 35: SLU2/3 0 0 147 0 0 0 Node 2: 36: SLU 4/5 0 0 88 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 45: SLU DT+tf 0 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 33: SLU 1/6 DX	0	0	106	0	0	0
Node 2: 36: SLU 4/5 0 0 88 0 0 0 Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 34: SLU2/3/4/5 DX	0	0	151	0	0	0
Node 2: 37: slu Max mez 0 0 85 0 0 0 Node 2: 38: slu Max tors 0 0 110 0 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 35: SLU2/3	0	0	147	0	0	0
Node 2: 38: slu Max tors 0 0 110 0 0 Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 36: SLU 4/5	0	0	88	0	0	0
Node 2: 39: slu Half 0 0 207 0 0 0 Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 37: slu Max mez	0	0	85	0	0	0
Node 2: 40: SLU Tf+v 0 0 203 0 0 0 Node 2: 41: SLU V+tf 0 0 116 0 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 38: slu Max tors	0	0	110	0	0	0
Node 2: 41: SLU V+tf 0 0 116 0 0 Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 39: slu Half	0	0	207	0	0	0
Node 2: 42: SLU V+tmez 0 0 68 0 0 0 Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 40: SLU Tf+v	0	0	203	0	0	0
Node 2: 43: SLU V+ttor 0 0 78 0 0 0 Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0	Node 2: 41: SLU V+tf	0	0	116	0	0	0
Node 2: 44: SLU DT+tf 0 0 127 0 0 0 Node 2: 45: SLU DT-tf 0 0 91 0 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0 0	Node 2: 42: SLU V+tmez	0	0	68	0	0	0
Node 2: 45: SLU DT-tf 0 0 91 0 0 Node 3: 28: SLU 1/6 0 0 78 0 0	Node 2: 43: SLU V+ttor	0	0	78	0	0	0
Node 3: 28: SLU 1/6 0 0 78 0 0	Node 2: 44: SLU DT+tf	0	0	127	0	0	0
	Node 2: 45: SLU DT-tf	0	0	91	0	0	0
Node 3: 29: SLU2/3/4/5 0 0 178 0 0	•	0	0	78	0	0	0
	Node 3: 29: SLU2/3/4/5	0	0	178	0	0	0

Node 3: 30: SLU2/3	0	0	50	0	0	0
Node 3: 31: SLU 4/5	0	0	183	0	0	0
Node 3: 32: slu FULL DX	0	0	94	0	0	0
-				_	_	_
Node 3: 33: SLU 1/6 DX	0	0	151	0	0	0
Node 3: 34: SLU2/3/4/5 DX	0	0	105	0	0	0
Node 3: 35: SLU2/3	0	0	147	0	0	0
Node 3: 36: SLU 4/5	0	0	88	0	0	0
Node 3: 37: slu Max mez	0	0	84	0	0	0
Node 3: 38: slu Max tors	0	0	147	0	0	0
	_			_	_	_
Node 3: 39: slu Half	0	0	50	0	0	0
Node 3: 40: SLU Tf+v	0	0	198	0	0	0
Node 3: 41: SLU V+tf	0	0	113	0	0	0
Node 3: 42: SLU V+tmez	0	0	68	0	0	0
Node 3: 43: SLU V+ttor	0	0	93	0	0	0
Node 3: 44: SLU DT+tf	0	0	111	0	0	0
	_	_			_	_
Node 3: 45: SLU DT-tf	0	0	118	0	0	0
Node 108: 28: SLU 1/6	0	0	78	0	0	0
Node 108: 29: SLU2/3/4/5	0	0	178	0	0	0
Node 108: 30: SLU2/3	0	-3	50	0	0	0
Node 108: 31: SLU 4/5	0	-125	188	0	0	0
Node 108: 31: 5L0 4/3	0	1	162	0	0	0
	_			_	_	
Node 108: 33: SLU 1/6 DX	0	-1	105	0	0	0
Node 108: 34: SLU2/3/4/5 DX	0	1	151	0	0	0
Node 108: 35: SLU2/3	0	6	88	0	0	0
Node 108: 36: SLU 4/5	0	-6	147	0	0	0
Node 108: 37: slu Max mez	0	-128	84	0	0	0
Node 108: 38: slu Max tors	0	-126	109	0	0	0
	_			_	_	
Node 108: 39: slu Half	0	-3	50	0	0	0
Node 108: 40: SLU Tf+v	0	-128	202	0	0	0
Node 108: 41: SLU V+tf	0	-212	116	0	0	0
Node 108: 42: SLU V+tmez	0	-212	68	0	0	0
Node 108: 43: SLU V+ttor	0	-211	78	0	0	0
Node 108: 44: SLU DT+tf	0	9	111	0	0	0
	0	-16	118	0	0	0
Node 108: 45: SLU DT-tf	_					
Node 117: 28: SLU 1/6	165	0	-141	0	0	0
Node 117: 29: SLU2/3/4/5	481	0	-432	0	0	0
Node 117: 30: SLU2/3	199	0	-172	0	0	0
Node 117: 31: SLU 4/5	452	-5	-406	0	0	0
Node 117: 32: slu FULL DX	269	0	-236	0	0	0
_	378	0	-337	0	0	0
Node 117: 33: SLU 1/6 DX		_		_	_	_
Node 117: 34: SLU2/3/4/5 DX	268	0	-236	0	0	0
Node 117: 35: SLU2/3	370	0	-329	0	0	0
Node 117: 36: SLU 4/5	278	0	-245	0	0	0
Node 117: 37: slu Max mez	406	-5	-363	0	0	0
Node 117: 38: slu Max tors	300	-4	-265	0	0	0
Node 117: 38: 3lu Half	199	0	-173	0	0	0
Node 117: 40: SLU Tf+v	484	-5	-434	0	0	0
Node 117: 41: SLU V+tf	296	-6	-262	0	0	0
Node 117: 42: SLU V+tmez	264	-6	-232	0	0	0
Node 117: 43: SLU V+ttor	222	-6	-194	0	0	0
Node 117: 44: SLU DT+tf	308	0	-273	0	0	0
Node 117: 44: 5LO DT-tf	262	0	-231	0	0	0
						_
Node 118: 28: SLU 1/6	165	0	-141	0	0	0
Node 118: 29: SLU2/3/4/5	481	0	-432	0	0	0
Node 118: 30: SLU2/3	199	0	-172	0	0	0
Node 118: 31: SLU 4/5	446	-6	-400	0	0	0
Node 118: 32: slu FULL DX	378	0	-337	0	0	0
Node 118: 33: SLU 1/6 DX	268	0	-236	0	0	0
Node 118: 34: SLU2/3/4/5 DX	378	0	-337	0	0	0
Node 118: 35: SLU2/3	278	0	-245	0	0	0
Node 118: 36: SLU 4/5	370	0	-329	0	0	0
Node 118: 37: slu Max mez	403	-6	-360	0	0	0
Node 118: 38: slu Max tors	346	-6	-308	0	0	0
Node 118: 39: slu Half	199	0	-173	0	0	0
Node 118: 40: SLU Tf+v	476	-7	-427	0	0	0

Node 118: 42: SLU V+thror	,						
Node 118. 44: SLU DT+tf 308	Node 118: 41: SLU V+tf	286	-9	-253	0	0	0
Node 118: 44: SLU DT+IF	Node 118: 42: SLU V+tmez	257	-9	-226	0	0	0
Node 118: 45: SLU DT-HF	Node 118: 43: SLU V+ttor	234	-8	-205	0	0	0
Node 123: 29: SLU 1/6	Node 118: 44: SLU DT+tf	308	0	-273	0	0	0
Node 123: 39: SLU2/3/4/5	Node 118: 45: SLU DT-tf	262	0	-230	0	0	0
Node 123: 39: SLU2/3/4/5		0	0	14	0	0	0
Node 123: 31: SLU 4/5		_	-		_	0	_
Node 123: 31: SLU 1/5 Node 123: 32: Slu FULL_DX Node 123: 33: SLU 1/6 DX Node 123: 33: SLU 1/6 DX Node 123: 33: SLU 1/6 DX Node 123: 34: SLU 2/3/4/5 DX Node 123: 34: SLU 2/3/4/5 DX Node 123: 35: SLU 2/3 Node 123: 35: SLU 2/3 Node 123: 35: SLU 2/3 Node 123: 36: SLU 4/5 Node 123: 39: Slu Half Node 123: 40: SLU Tf+v Node 123: 40: SLU N+tf Node 124: 30: SLU N+tf Node 125: 30: SLU N/tf Node 125: 30						_	
Node 123: 32: SIL PULL_DX	•		_		_	~	_
Node 123: 33: SLU 1/6 DX	The state of the s				_	_	_
Node 123: 34: SLUZ/3/4/5 DX	_					_	
Node 123: 35: SLU2/3	· ·	-			_	_	_
Node 123: 36: SLU 4/5					_	_	_
Node 123: 37: Slu Max mez	•				_	_	_
Node 123: 38: slu Max tors					_	_	_
Node 123: 39: slu Half			_		_	_	
Node 123: 40: SLU Tf+v						_	
Node 123: 41: SLU V+tfeez -352 62 -16 0 0 0 0 0 Node 123: 42: SLU V+tmez -351 62 0 0 0 0 0 0 Node 123: 42: SLU V+tmer -348 61 -16 0 0 0 0 0 Node 123: 43: SLU DT+tf -48 -8 -14 0 0 0 0 Node 123: 44: SLU DT+tf 86 15 -17 0 0 0 0 Node 123: 45: SLU DT+tf 86 15 -17 0 0 0 0 Node 124: 28: SLU 1/6 -1 0 -49 0 0 0 0 Node 124: 29: SLU2/3/4/5 -1 0 -49 0 0 0 0 Node 124: 30: SLU2/3 157 0 -2 0 0 0 0 Node 124: 31: SLU 4/5 51 0 -53 0 0 0 0 Node 124: 32: Slu I/6 DX 2 0 -3 0 0 0 0 Node 124: 33: SLU 1/6 DX 2 0 -3 0 0 0 0 Node 124: 33: SLU 1/6 DX 2 0 -3 0 0 0 0 Node 124: 35: SLU2/3 -13 0 -17 0 0 0 0 Node 124: 37: SLU M/5 11 0 -37 0 0 0 0 Node 124: 38: SLU 4/5 11 0 -37 0 0 0 0 Node 124: 38: SLU M/5 11 0 -37 0 0 0 0 Node 124: 38: SLU M/5 11 0 -37 0 0 0 0 Node 124: 38: SLU M/5 11 0 -37 0 0 0 0 Node 124: 38: SLU M/5 11 0 -37 0 0 0 0 0 Node 124: 39: SLU MAX mez 210 0 -5 0 0 0 0 Node 124: 39: SLU MAX mez 201 0 -5 0 0 0 0 Node 124: 41: SLU V+tff 351 0 -15 0 0 0 0 Node 124: 41: SLU V+tff 351 0 -15 0 0 0 0 Node 124: 41: SLU V+tff 351 0 -15 0 0 0 0 Node 124: 43: SLU V+tff 351 0 -15 0 0 0 0 Node 124: 45: SLU DT+tf -9 0 -14 0 0 0 0 Node 124: 45: SLU DT+tf -9 0 -14 0 0 0 0 Node 125: 31: SLU J/5 -142 -5 568 0 0 0 0 Node 125: 33: SLU J/6 DX -131 0 527 0 0 0 0 Node 125: 33: SLU J/6 DX -131 0 527 0 0 0 0 Node 125: 33: SLU J/5 DX -131 0 527 0 0 0 0 Node 125: 33: SLU J/5 DX -131 0 527 0 0 0 0 Node 125: 33: SLU J/5 DX -131 0 527 0 0 0 0 Node 125: 33: SLU J/5 DX -131 0 527 0 0 0 0 Node 125: 34:			_		_	_	_
Node 123: 42: SLU V+ttmez		-214		-31	_	_	_
Node 123: 43: SLU V+ttor		-352	62	-16	0	0	_
Node 123: 44: SLU DT+tf 86	Node 123: 42: SLU V+tmez	-351	62	0	0	0	0
Node 123: 45: SLU DT-tf 86	Node 123: 43: SLU V+ttor	-348	61	-16	0	0	0
Node 124: 28: SLU 1/6	Node 123: 44: SLU DT+tf	-48	-8	-14	0	0	0
Node 124: 29: SLUZ/3/4/5	Node 123: 45: SLU DT-tf	86	15	-17	0	0	0
Node 124: 30: SLU2/3	Node 124: 28: SLU 1/6	-1	0	14	0	0	0
Node 124: 30: SLU2/3	Node 124: 29: SLU2/3/4/5	-1	0	-49	0	0	0
Node 124: 31: SLU 4/5 Node 124: 32: slu FULL_DX -5 0 -5 0 -23 0 0 0 0 0 0 Node 124: 32: slu FULL_DX -5 0 0 -3 0 0 0 0 0 Node 124: 33: SLU 1/6 DX 2 0 0 -3 0 0 0 0 0 0 Node 124: 33: SLU 2/3/4/5 DX -4 0 0 -32 0 0 0 0 0 Node 124: 35: SLU 2/3/4/5 DX -13 0 -17 0 0 0 0 0 Node 124: 36: SLU 4/5 11 0 -37 0 0 0 0 0 Node 124: 37: slu Max mez 210 0 10 0 0 0 Node 124: 39: slu Half 156 0 -2 0 0 0 0 Node 124: 39: slu Half 156 0 0 -2 0 0 0 0 Node 124: 40: SLU Tf+v 212 0 -31 0 0 0 0 Node 124: 41: SLU V+tf 351 0 -15 0 0 0 0 Node 124: 42: SLU V+ttmez 350 0 1 0 0 0 Node 124: 43: SLU DT+tf -9 0 -14 0 0 0 0 Node 124: 45: SLU DT+tf -9 0 -14 0 0 0 0 Node 125: 28: SLU 1/6 -59 0 Node 125: 32: Slu Z/3/4/5 -146 0 0 0 Node 125: 33: Slu V/5 -142 -5 -568 0 0 0 0 Node 125: 33: SLU 1/5 DX -94 0 Node 125: 33: SLU 1/5 DX -94 0 Node 125: 33: SLU 1/5 DX -94 0 Node 125: 33: SLU 2/3 -71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			_	_	_	_	_
Node 124: 32: Slu FULL_DX	·	_	_		_	_	_
Node 124: 33: SLU 1/6 DX					_	_	
Node 124: 34: SLUZ/3/4/5 DX Node 124: 35: SLUZ/3 Node 124: 36: SLU 4/5 11 0 -37 0 0 0 0 0 0 Node 124: 36: SLU 4/5 11 0 -37 0 0 0 0 0 Node 124: 37: slu Max mez 210 0 10 0 0 0 Node 124: 38: slu Max tors 201 0 -5 0 0 0 Node 124: 39: slu Half 156 0 -2 0 0 0 Node 124: 39: slu Half 156 0 -2 0 0 0 Node 124: 40: SLU Tf+v 212 0 -31 0 0 0 Node 124: 41: SLU V+tf 351 0 -15 0 0 0 Node 124: 42: SLU V+ttmez 350 0 1 0 0 0 Node 124: 43: SLU V+ttor 347 0 -4 0 0 0 Node 124: 44: SLU DT+tf -9 0 -14 0 0 0 Node 125: 28: SLU 1/6 Node 125: 28: SLU 1/6 Node 125: 32: SLU 1/5 Node 125: 33: SLU 4/5 -166 0 0 0 Node 125: 32: slu FULL_DX Node 125: 32: slu FULL_DX Node 125: 32: slu FULL_DX Node 125: 33: SLU 4/5 -142 -5 -568 0 0 0 Node 125: 33: SLU 4/5 -142 -5 -568 0 0 0 Node 125: 33: SLU 4/5 Node 125: 33: SLU 1/6 DX -94 0 0 0 Node 125: 33: SLU 4/5 -142 -5 -568 0 0 0 0 Node 125: 33: SLU 4/5 -142 -5 -568 0 0 0 0 Node 125: 33: SLU 4/5 -142 -5 -568 0 0 0 0 Node 125: 33: SLU 4/5 -142 -5 -568 0 0 0 0 Node 125: 33: SLU 4/5 -142 -5 -568 0 0 0 0 Node 125: 33: SLU 4/5 -131 0 527 0 0 0 Node 125: 33: SLU 4/5 -131 0 527 0 0 0 0 Node 125: 33: SLU 4/5 -128 0 515 0 0 0 Node 125: 33: Slu 4/5 -128 0 0 0 Node 125: 33: Slu 4/5 -128 0 0 0 Node 125: 39: Slu 4/5 -128 0 0 0 Node 125: 39: Slu Max mez -127 -5 511 0 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 41: SLU V+tf -81 -11 -11 286 0 0 0 0 0 Node 125: 42: SLU V+tf -81 -111 325 0 0 0 0 Node 125: 42: SLU V+tfmez -71 -11	-	-	_		_	_	
Node 124: 35: SLU2/3	The state of the s					_	
Node 124: 36: SLU 4/5 Node 124: 37: slu Max mez Node 124: 38: slu Max tors Node 124: 38: slu Max tors Node 124: 38: slu Max tors Node 124: 39: slu Half Node 124: 40: SLU Tf+v Node 124: 40: SLU V+tf Node 124: 41: SLU V+tf Node 124: 42: SLU V+tmez Node 124: 42: SLU V+tmez Node 124: 43: SLU V+ttor Node 124: 44: SLU V+tf Node 124: 44: SLU V+tf Node 124: 44: SLU V+tf Node 124: 45: SLU V+tf Node 124: 45: SLU V+tf Node 125: 28: SLU 1/6 Node 125: 28: SLU 1/6 Node 125: 30: SLU 2/3 Node 125: 30: SLU 2/3 Node 125: 31: SLU 4/5 Node 125: 32: Slu FULL DX Node 125: 32: Slu FULL DX Node 125: 33: SLU 1/6 DX Node 125: 33: SLU 1/5 DX Node 125: 35: SLU 1/5 DX Node 125: 36: SLU 1/5 DX Node 125: 37: slu Max mez Node 125: 37: slu Max mez Node 125: 38: slu Half Node 125: 39: slu Half Node 125: 42: SLU V+tmez -71 -11 -11 -71 -71 -71 -71 -71 -71 -71					_	_	_
Node 124: 37: slu Max mez 210 0 10 0 0 0 Node 124: 38: slu Max tors 201 0 -5 0 0 0 Node 124: 39: slu Half 156 0 -2 0 0 0 Node 124: 40: SLU Tf+v 212 0 -31 0 0 0 Node 124: 41: SLU V+tf 351 0 -15 0 0 0 Node 124: 42: SLU V+tmez 350 0 1 0 0 0 Node 124: 43: SLU V+ttor 347 0 -4 0 0 0 Node 124: 44: SLU DT+tf -9 0 -14 0 0 0 Node 124: 45: SLU DT-tf 15 0 -17 0 0 0 Node 125: 28: SLU 1/6 -59 0 242 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5	•	_	_		_	_	_
Node 124: 38: slu Max tors 201 0 -5 0 0 0 Node 124: 39: slu Half 156 0 -2 0 0 0 Node 124: 40: SLU Tf+v 212 0 -31 0 0 0 Node 124: 41: SLU V+tf 351 0 -15 0 0 0 Node 124: 42: SLU V+tmez 350 0 1 0 0 0 Node 124: 43: SLU V+ttor 347 0 -4 0 0 0 Node 124: 44: SLU DT+tf -9 0 -14 0 0 0 Node 124: 45: SLU DT-tf 15 0 -17 0 0 0 Node 125: 38: SLU 1/6 -59 0 242 0 0 0 Node 125: 39: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: Slu FULL_DX -131 0 <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>•</td> <td>_</td>			_		_	•	_
Node 124: 39: Slu Half 156 0 -2 0 0 0 Node 124: 40: SLU Tf+v 212 0 -31 0 0 0 Node 124: 41: SLU V+tf 351 0 -15 0 0 0 Node 124: 42: SLU V+ttor 347 0 -4 0 0 0 Node 124: 43: SLU DT+tf -9 0 -14 0 0 0 Node 124: 45: SLU DT-tf 15 0 -17 0 0 0 Node 125: 28: SLU 1/6 -59 0 242 0 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 33: SLU 3/5 -131 0			_		_	_	_
Node 124: 40: SLU Tf+v 212 0 -31 0 0 Node 124: 41: SLU V+tf 351 0 -15 0 0 Node 124: 42: SLU V+tmez 350 0 1 0 0 Node 124: 43: SLU V+ttor 347 0 -4 0 0 Node 124: 44: SLU DT+tf -9 0 -14 0 0 Node 125: 28: SLU 1/6 -59 0 242 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 Node 125: 35: SLU2/3 -97 0 392 0			_	_	_	_	_
Node 124: 41: SLU V+tf 351 0 -15 0 0 0 Node 124: 42: SLU V+tmez 350 0 1 0 0 0 Node 124: 43: SLU V+ttor 347 0 -4 0 0 0 Node 124: 44: SLU DT+tf -9 0 -14 0 0 0 Node 125: 28: SLU DT-tf 15 0 -17 0 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 33: SLU 2/3/A/5 DX -131 0 526 0 0 0 Node 125: 35: SLU2/3 -97 0						_	
Node 124: 42: SLU V+tmez 350 0 1 0 0 0 Node 124: 43: SLU V+ttor 347 0 -4 0 0 0 Node 124: 44: SLU DT+tf -9 0 -14 0 0 0 Node 124: 45: SLU DT-tf 15 0 -17 0 0 0 Node 125: 28: SLU 1/6 -59 0 242 0 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: Slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU 4/5 -128 0			_		_	_	_
Node 124: 43: SLU V+ttor 347 0 -4 0 0 0 Node 124: 44: SLU DT+tf -9 0 -14 0 0 0 Node 124: 45: SLU DT-tf 15 0 -17 0 0 0 Node 125: 28: SLU 1/6 -59 0 242 0 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 37: slu Max mez -128 <th< td=""><td></td><td></td><td>_</td><td></td><td>_</td><td>_</td><td>_</td></th<>			_		_	_	_
Node 124: 44: SLU DT+tf -9 0 -14 0 0 0 Node 124: 45: SLU DT-tf 15 0 -17 0 0 0 Node 125: 28: SLU 1/6 -59 0 242 0 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 33: SLU 1/6 DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td>~</td> <td>_</td>			_		_	~	_
Node 124: 45: SLU DT-tf 15 0 -17 0 0 Node 125: 28: SLU 1/6 -59 0 242 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0		347		-4		_	
Node 125: 28: SLU 1/6 -59 0 242 0 0 0 Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 <t< td=""><td>Node 124: 44: SLU DT+tf</td><td>-9</td><td>0</td><td>-14</td><td>0</td><td>0</td><td>0</td></t<>	Node 124: 44: SLU DT+tf	-9	0	-14	0	0	0
Node 125: 29: SLU2/3/4/5 -166 0 664 0 0 0 Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81	Node 124: 45: SLU DT-tf	15	0	-17	0	0	0
Node 125: 30: SLU2/3 -71 0 287 0 0 0 Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71	Node 125: 28: SLU 1/6	-59	0	242	0	0	0
Node 125: 31: SLU 4/5 -142 -5 568 0 0 0 Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0	Node 125: 29: SLU2/3/4/5	-166	0	664	0	0	0
Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0	Node 125: 30: SLU2/3	-71	0	287	0	0	0
Node 125: 32: slu FULL_DX -131 0 526 0 0 0 Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0	Node 125: 31: SLU 4/5	-142	-5	568	0	0	0
Node 125: 33: SLU 1/6 DX -94 0 379 0 0 0 Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0	· ·	-131		526	0	0	0
Node 125: 34: SLU2/3/4/5 DX -131 0 527 0 0 0 Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0	_				0	0	0
Node 125: 35: SLU2/3 -97 0 392 0 0 0 Node 125: 36: SLU 4/5 -128 0 515 0 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0	The state of the s						
Node 125: 36: SLU 4/5 -128 0 515 0 0 Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0							
Node 125: 37: slu Max mez -127 -5 511 0 0 0 Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0	· ·						
Node 125: 38: slu Max tors -108 -6 436 0 0 0 Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0							
Node 125: 39: slu Half -71 0 288 0 0 0 Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0							
Node 125: 40: SLU Tf+v -152 -5 608 0 0 0 Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0							
Node 125: 41: SLU V+tf -81 -11 325 0 0 0 Node 125: 42: SLU V+tmez -71 -11 286 0 0 0							
Node 125: 42: SLU V+tmez -71 -11 286 0 0							
Node 125: 43: SLU V+ttor -63 -12 256 0 0 0						_	
Node 125: 44: SLU DT+tf -107 0 433 0 0 0							
Node 125: 45: SLU DT-tf -92 0 372 0 0							
Node 126: 28: SLU 1/6 -59 0 242 0 0 0	The state of the s					_	
Node 126: 29: SLU2/3/4/5 -166 0 664 0 0							
Node 126: 30: SLU2/3 -71 0 287 0 0	-						
Node 126: 31: SLU 4/5 -168 -4 674 0 0	The state of the s				_		
Node 126: 32: slu FULL_DX -94 0 380 0 0	_		0		0		0
Node 126: 33: SLU 1/6 DX -131 0 527 0 0	Node 126: 33: SLU 1/6 DX	-131	0	527	0	0	0

Node 126: 34: SLU2/3/4/5 DX	-94	0	379	0	0	0
Node 126: 35: SLU2/3	-128	0	515	0	0	0
Node 126: 36: SLU 4/5	-97	0	392	0	0	0
Node 126: 37: slu Max mez	-152	-4	612	0	0	0
Node 126: 38: slu Max tors	-132	-5	470	0	0	0
Node 126: 39: slu Half	-116 -71	-5 0	288	0	0	0
				_	_	
Node 126: 40: SLU Tf+v	-179	-3	716	0	0	0
Node 126: 41: SLU V+tf	-123	-8	496	0	0	0
Node 126: 42: SLU V+tmez	-112	-8	453	0	0	0
Node 126: 43: SLU V+ttor	-98	-9	397	0	0	0
Node 126: 44: SLU DT+tf	-107	0	433	0	0	0
Node 126: 45: SLU DT-tf	-92	0	372	0	0	0
Node 129: 28: SLU 1/6	-164	0	-140	0	0	0
Node 129: 29: SLU2/3/4/5	-480	0	-431	0	0	0
Node 129: 30: SLU2/3	-447	0	-401	0	0	0
Node 129: 31: SLU 4/5	-193	-5	-167	0	0	0
Node 129: 32: slu FULL DX	-376	0	-336	0	0	0
Node 129: 33: SLU 1/6 DX	-267	0	-235	0	0	0
Node 129: 34: SLU2/3/4/5 DX	-377	0	-336	0	0	0
Node 129: 35: SLU2/3	-368	0	-328	0	0	0
•	-276	0	-326	0	0	0
Node 129: 36: SLU 4/5		_		_	_	_
Node 129: 37: slu Max mez	-401	-6	-358	0	0	0
Node 129: 38: slu Max tors	-345	-6	-307	0	0	0
Node 129: 39: slu Half	-446	0	-400	0	0	0
Node 129: 40: SLU Tf+v	-475	-7	-427	0	0	0
Node 129: 41: SLU V+tf	-286	-9	-252	0	0	0
Node 129: 42: SLU V+tmez	-257	-9	-225	0	0	0
Node 129: 43: SLU V+ttor	-234	-8	-205	0	0	0
Node 129: 44: SLU DT+tf	-265	0	-233	0	0	0
Node 129: 45: SLU DT-tf	-337	0	-300	0	0	0
Node 130: 28: SLU 1/6	-164	0	-140	0	0	0
Node 130: 29: SLU2/3/4/5	-480	0	-431	0	0	0
Node 130: 30: SLU2/3	-447	0	-401	0	0	0
Node 130: 31: SLU 4/5	-200	-3	-173	0	0	0
Node 130: 32: slu FULL DX	-267	0	-235	0	0	0
Node 130: 33: SLU 1/6 DX	-377	0	-336	0	0	0
Node 130: 34: SLU2/3/4/5 DX	-267	0	-235	0	0	0
Node 130: 35: SLU2/3	-276	0	-244	0	0	0
Node 130: 35: SLU 2/5	-368	0	-328	0	0	0
		-5		0	0	0
Node 130: 37: slu Max mez	-404		-361	_		
Node 130: 38: slu Max tors	-299	-4	-264	0	0	0
Node 130: 39: slu Half	-446	0	-399	0	0	0
Node 130: 40: SLU Tf+v	-482	-5	-433	0	0	0
Node 130: 41: SLU V+tf	-295	-6	-261	0	0	0
Node 130: 42: SLU V+tmez	-263	-6	-231	0	0	0
Node 130: 43: SLU V+ttor	-221	-6	-193	0	0	0
Node 130: 44: SLU DT+tf	-265	0	-233	0	0	0
Node 130: 45: SLU DT-tf	-337	0	-300	0	0	0
Node 133: 28: SLU 1/6	0	0	14	0	0	0
Node 133: 29: SLU2/3/4/5	0	0	-50	0	0	0
Node 133: 30: SLU2/3	0	0	-53	0	0	0
Node 133: 31: SLU 4/5	0	0	-2	0	0	0
Node 133: 32: slu FULL DX	0	0	-13	0	0	0
Node 133: 33: SLU 1/6 DX	0	0	-33	0	0	0
Node 133: 34: SLU2/3/4/5 DX	0	0	-4	0	0	0
Node 133: 35: SLU2/3	0	0	-17	0	0	0
Node 133: 36: SLU 4/5	0	0	-38	0	0	0
Node 133: 37: slu Max mez	0	0	9	0	0	0
Node 133: 38: slu Max tors	_	0	-31	_	0	0
	0			0		
Node 133: 39: slu Half	0	0	-34	0	0	0
Node 133: 40: SLU Tf+v	0	0	-32	0	0	0
Node 133: 41: SLU V+tf	0	0	-16	0	0	0
Node 133: 42: SLU V+tmez	0	0	0	0	0	0
Node 133: 43: SLU V+ttor	0	0	-16	0	0	0
Node 133: 44: SLU DT+tf	0	0	-24	0	0	0

Node 134: 29: SLU 2/3/4/5	Node 133: 45: SLU DT-tf	0	0	-1	0	0	0
Node 134: 39: SLU2/3/4/5		_					
Node 134: 31: SLU 4/5	-	_	_		_	_	_
Node 134: 31: SLU 4/5							
Node 134: 32: SIU FUIL DX	-	_	_		_	_	_
Node 134: 34: SLU 1/6 DX		_			_	_	_
Node 134: 34: SLU2/3/4/5 DX	——————————————————————————————————————	_			_	_	_
Node 134: 35: SLU2/3	-	_			•	_	_
Node 134: 36: SLU 4/5		_			_	_	
Node 134: 37: slu Max mez		_			_	_	
Node 134: 38: slu Max tors		_	_		_	_	_
Node 134: 39: slu Half		_			_	•	_
Node 134: 40: SLU Tf+v		_			_	_	_
Node 134: 41: SLU V+tfr		_	_		_	_	_
Node 134: 42: SLU V+tmez		_	_		_	_	
Node 134: 43: SLU V+ttor			150			_	
Node 134: 44: SLU DT+tf		0	149	1	0	0	0
Node 134: 45: SLU DT-tf		_	_			_	_
Node 135: 28: SLU 1/6	Node 134: 44: SLU DT+tf	0	3	-23	0	0	0
Node 135: 29: SLU2/3/4/5	Node 134: 45: SLU DT-tf	0	-4	-1	0	0	0
Node 135: 30: SLU2/3	Node 135: 28: SLU 1/6	59	0	241	0	0	0
Node 135: 30: SLU2/3	Node 135: 29: SLU2/3/4/5	165	0	662	0	0	0
Node 135: 31: SLU 4/5		154	0	619	0	0	0
Node 135: 32: slu FULL_DX		57	-7	233	0	0	0
Node 135: 33: SLU 1/6 DX		131	0	525	0	0	0
Node 135: 34: SLU2/3/4/5 DX		94	0	378	0	0	0
Node 135: 35: SLU2/3		131	0		0	0	0
Node 135: 36: SLU 4/5 97 0 391 0 0 0 0 0 Node 135: 37: Slu Max mez 127 -5 508 0 0 0 0 0 Node 135: 38: Slu Max tors 108 -6 435 0 0 0 0 0 Node 135: 39: Slu Half 154 0 617 0 0 0 0 Node 135: 40: SLU Tf+v 152 -5 607 0 0 0 0 Node 135: 41: SLU V+tf 80 -11 324 0 0 0 0 Node 135: 42: SLU V+tmez 71 -11 285 0 0 0 0 0 Node 135: 43: SLU V+ttor 63 -12 256 0 0 0 0 Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 135: 45: SLU DT-tf 117 0 471 0 0 0 0 Node 136: 28: SLU J/6 59 0 241 0 0 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 0 Node 136: 33: SLU J/6 DX 94 0 378 0 0 0 Node 136: 33: SLU J/6 DX 94 0 378 0 0 0 Node 136: 33: SLU J/6 DX 94 0 378 0 0 0 Node 136: 33: SLU J/6 DX 94 0 378 0 0 0 Node 136: 33: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU2/3 97 0 391 0 0 0 Node 136: 37: Slu Max mez 152 -4 609 0 0 0 0 Node 136: 38: Slu Max tors 116 -5 469 0 0 0 0 Node 136: 39: Slu Half 154 0 617 0 0 0 Node 136: 39: Slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU V+ttmez 112 -8 452 0 0 0 0 Node 136: 44: SLU V+ttmez 112 -8 452 0 0 0 0 Node 136: 44: SLU V+ttmez 112 -8 452 0 0 0 0 Node 136: 44: SLU V+ttmez 112 -8 452 0 0 0 0 0 Node 136: 44: SLU DT+tf					_	_	
Node 135: 37: slu Max mez	•					_	
Node 135: 38: slu Max tors 108 -6 435 0 0 0 Node 135: 39: slu Half 154 0 617 0 0 0 Node 135: 40: SLU Tf+v 152 -5 607 0 0 0 Node 135: 41: SLU V+tf 80 -11 324 0 0 0 Node 135: 42: SLU V+ttmez 71 -11 285 0 0 0 Node 135: 43: SLU V+ttor 63 -12 256 0 0 0 Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 135: 45: SLU DT-tf 117 0 471 0 0 0 Node 136: 28: SLU 1/6 59 0 241 0 0 0 Node 136: 30: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 31: SLU 4/5 83 -6<			_		_	_	
Node 135: 39: slu Half 154 0 617 0 0 0 Node 135: 40: SLU Tf+v 152 -5 607 0 0 0 Node 135: 41: SLU V+tf 80 -11 324 0 0 0 Node 135: 42: SLU V+tmez 71 -11 285 0 0 0 Node 135: 43: SLU V+ttor 63 -12 256 0 0 0 Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 136: 35: SLU J/6 59 0 241 0 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: Slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0			_		_	_	_
Node 135: 40: SLU Tf+v 152 -5 607 0 0 0 Node 135: 41: SLU V+tf 80 -11 324 0 0 0 Node 135: 42: SLU V+tmez 71 -11 285 0 0 0 Node 135: 43: SLU V+ttor 63 -12 256 0 0 0 Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 136: 28: SLU 1/6 93 0 377 0 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 32: Slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 33: Slu FULL_DX 94 0 378 0 0 0 Node 136: 33: Slu V4/5 93 0 <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td>					_	_	
Node 135: 41: SLU V+tf 80 -11 324 0 0 0 Node 135: 42: SLU V+tmez 71 -11 285 0 0 0 Node 135: 43: SLU V+ttor 63 -12 256 0 0 0 Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 135: 45: SLU DT-tf 117 0 471 0 0 0 Node 136: 28: SLU 1/6 59 0 241 0 0 0 Node 136: 32: SLU 2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: Slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU 2/3/4/5 DX 93		_	_		_	_	_
Node 135: 42: SLU V+tmez 71 -11 285 0 0 0 Node 135: 43: SLU V+ttor 63 -12 256 0 0 0 Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 136: 28: SLU DT-tf 117 0 471 0 0 0 Node 136: 28: SLU 1/6 59 0 241 0 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 93 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 93 0 378 0 0 0 Node 136: 33: SLU 2/3 97 0			_		_	~	_
Node 135: 43: SLU V+ttor 63 -12 256 0 0 0 Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 136: 28: SLU DT-tf 117 0 471 0 0 0 Node 136: 28: SLU 1/6 59 0 241 0 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 35: SLU2/3 97 0				_	_	_	_
Node 135: 44: SLU DT+tf 93 0 377 0 0 0 Node 136: 28: SLU 1/6 59 0 241 0 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 39: slu Half 154 0						_	
Node 135: 45: SLU DT-tf 117 0 471 0 0 Node 136: 28: SLU 1/6 59 0 241 0 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 39: slu Half 154 0 617					_	_	_
Node 136: 28: SLU 1/6 59 0 241 0 0 Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 39: slu Half 154 0 617						_	=
Node 136: 29: SLU2/3/4/5 165 0 662 0 0 0 Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 35: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 42: SLU V+tter 112							
Node 136: 30: SLU2/3 154 0 619 0 0 0 Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 35: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 42: SLU V+tfer 123 -8 495 0 0 0 Node 136: 43: SLU V+ttor 98 <td>•</td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td>	•				_	_	
Node 136: 31: SLU 4/5 83 -6 335 0 0 0 Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 35: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 42: SLU V+tff 123 -8 495 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93<						_	
Node 136: 32: slu FULL_DX 94 0 378 0 0 0 Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0			_			_	
Node 136: 33: SLU 1/6 DX 131 0 525 0 0 0 Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0							
Node 136: 34: SLU2/3/4/5 DX 93 0 378 0 0 0 Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	-						
Node 136: 35: SLU2/3 97 0 391 0 0 0 Node 136: 36: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0							
Node 136: 36: SLU 4/5 128 0 514 0 0 0 Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0							
Node 136: 37: slu Max mez 152 -4 609 0 0 0 Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	-						
Node 136: 38: slu Max tors 116 -5 469 0 0 0 Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	The state of the s	128	0	514	0	0	0
Node 136: 39: slu Half 154 0 617 0 0 0 Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	Node 136: 37: slu Max mez	152	-4	609	0	0	0
Node 136: 40: SLU Tf+v 178 -3 715 0 0 0 Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	Node 136: 38: slu Max tors	116	-5	469	0	0	0
Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	Node 136: 39: slu Half	154	0	617	0	0	0
Node 136: 41: SLU V+tf 123 -8 495 0 0 0 Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	Node 136: 40: SLU Tf+v		-3	715	0	0	0
Node 136: 42: SLU V+tmez 112 -8 452 0 0 0 Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	Node 136: 41: SLU V+tf		-8		0	0	0
Node 136: 43: SLU V+ttor 98 -9 396 0 0 0 Node 136: 44: SLU DT+tf 93 0 377 0 0 0	Node 136: 42: SLU V+tmez				0		
Node 136: 44: SLU DT+tf 93 0 377 0 0							

7.1.5. Reazioni vincolari Casi sismici

	FX	FY	FZ	MX	MY	MZ
	(kN)	(kN)	(kN)	(kNm)	(kNm)	(kNm)
Node 1: 46: SLV X+++	0	3	37	0	0	0
Node 1: 47: SLV X+-+	0	-1	37	0	0	0
Node 1: 48: SLV X++-	0	3	37	0	0	0

Node 1: 49: SLV X+	0	-1	37	0	0	0
Node 1: 50: SLV X-++	0	1	38	0	0	0
				_		_
Node 1: 51: SLV X+	0	-3	38	0	0	0
Node 1: 52: SLV X-+-	0	1	38	0	0	0
Node 1: 53: SLV X	0	-3	38	0	0	0
Node 1: 54: SLV Y+++	0	7	37	0	0	0
	_		_	_	_	_
Node 1: 55: SLV Y-++	0	7	37	0	0	0
Node 1: 56: SLV Y++-	0	7	37	0	0	0
Node 1: 57: SLV Y-+-	0	7	37	0	0	0
	_		_	-	_	_
Node 1: 58: SLV Y+-+	0	-7	37	0	0	0
Node 1: 59: SLV Y+	0	-8	38	0	0	0
Node 1: 60: SLV Y+	0	-7	37	0	0	0
Node 1: 61: SLV Y	0	-8	37	0	0	0
	_			-	_	_
Node 1: 62: SLV Z+++	0	2	37	0	0	0
Node 1: 63: SLV Z-++	0	2	38	0	0	0
Node 1: 64: SLV Z+-+	0	-2	37	0	0	0
Node 1: 65: SLV Z+	0	-3	38	0	0	0
	_				_	_
Node 1: 66: SLV Z++-	0	2	37	0	0	0
Node 1: 67: SLV Z-+-	0	2	37	0	0	0
Node 1: 68: SLV Z+	0	-2	37	0	0	0
Node 1: 69: SLV Z	0	-3	37	0	0	0
	_		_			
Node 2: 46: SLV X+++	0	0	37	0	0	0
Node 2: 47: SLV X+-+	0	0	37	0	0	0
Node 2: 48: SLV X++-	0	0	37	0	0	0
Node 2: 49: SLV X+	0	0	37	0	0	0
	_	_		-	_	_
Node 2: 50: SLV X-++	0	0	38	0	0	0
Node 2: 51: SLV X+	0	0	38	0	0	0
Node 2: 52: SLV X-+-	0	0	38	0	0	0
Node 2: 53: SLV X	0	0	37	0	0	0
Node 2: 54: SLV Y+++	0	0	37	0	0	0
Node 2: 55: SLV Y-++	0	0	37	0	0	0
Node 2: 56: SLV Y++-	0	0	37	0	0	0
	0	_	_	-	_	_
Node 2: 57: SLV Y-+-	_	0	37	0	0	0
Node 2: 58: SLV Y+-+	0	0	37	0	0	0
Node 2: 59: SLV Y+	0	0	37	0	0	0
Node 2: 60: SLV Y+	0	0	37	0	0	0
	_		_	-	_	_
Node 2: 61: SLV Y	0	0	37	0	0	0
Node 2: 62: SLV Z+++	0	0	37	0	0	0
Node 2: 63: SLV Z-++	0	0	37	0	0	0
Node 2: 64: SLV Z+-+	0	0	37	0	0	0
	_	_		_	_	_
Node 2: 65: SLV Z+	0	0	37	0	0	0
Node 2: 66: SLV Z++-	0	0	37	0	0	0
Node 2: 67: SLV Z-+-	0	0	37	0	0	0
Node 2: 68: SLV Z+	0	0	37	0	0	0
						_
Node 2: 69: SLV Z	0	0	37	0	0	0
Node 3: 46: SLV X+++	0	0	37	0	0	0
Node 3: 47: SLV X+-+	0	0	37	0	0	0
Node 3: 48: SLV X++-	0	0	37	0	0	0
Node 3: 49: SLV X+	0	0	37	0	0	0
Node 3: 50: SLV X-++	0	0	37	0	0	0
Node 3: 51: SLV X+	0	0	37	0	0	0
Node 3: 52: SLV X-+-	0	0	37	0	0	0
Node 3: 53: SLV X	0	0	37	0	0	0
Node 3: 54: SLV Y+++	0	0	37	0	0	0
Node 3: 55: SLV Y-++	0	0	37	0	0	0
Node 3: 56: SLV Y++-	0	0	37	0	0	0
	_				_	_
Node 3: 57: SLV Y-+-	0	0	37	0	0	0
Node 3: 58: SLV Y+-+	0	0	37	0	0	0
Node 3: 59: SLV Y+	0	0	37	0	0	0
Node 3: 60: SLV Y+	0	0	37	0	0	0
Node 3: 61: SLV Y	0	0	37	0	0	0
Node 3: 62: SLV Z+++	0	0	37	0	0	0
Node 3: 63: SLV Z-++	0	0	37	0	0	0
Node 3: 64: SLV Z+-+	0	0	37	0	0	0
Node 3: 65: SLV Z+	0	0	37	0	0	0

Node 3: 66: SLV Z++-	0	0	37	0	0	0
Node 3: 67: SLV Z-+-	0	0	37	0	0	0
Node 3: 68: SLV Z+	0	0	37	0	0	0
Node 3: 69: SLV Z	0	0	37	0	0	0
Node 108: 46: SLV X+++	0	1	37	0	0	0
Node 108: 40: SEV X+++	0	-2	37	0	0	0
Node 108: 48: SLV X++-	0	1	37	0	0	0
Node 108: 49: SLV X+	0	-2	37	0	0	0
Node 108: 50: SLV X-++	0	2	37	0	0	0
Node 108: 51: SLV X+	0	-1	37	0	0	0
Node 108: 52: SLV X-+-	0	2	37	0	0	0
Node 108: 53: SLV X	0	-1	37	0	0	0
Node 108: 54: SLV Y+++	0	5	37	0	0	0
Node 108: 55: SLV Y-++	0	5	37	0	0	0
Node 108: 56: SLV Y++-	0	5	37	0	0	0
Node 108: 57: SLV Y-+-	0	5	37	0	0	0
Node 108: 58: SLV Y+-+	0	-5	37	0	0	0
Node 108: 59: SLV Y+	0	-5	37	0	0	0
					_	
Node 108: 60: SLV Y+	0	-5 -	37	0	0	0
Node 108: 61: SLV Y	0	-5 1	37	0	0	0
Node 108: 62: SLV Z+++	0	1	37	0	0	0
Node 108: 63: SLV Z-++	0	2	37	0	0	0
Node 108: 64: SLV Z+-+	0	-2	37	0	0	0
Node 108: 65: SLV Z+	0	-1	37	0	0	0
Node 108: 66: SLV Z++-	0	1	37	0	0	0
Node 108: 67: SLV Z-+-	0	2	37	0	0	0
Node 108: 68: SLV Z+	0	-2	37	0	0	0
Node 108: 69: SLV Z	0	-1	37	0	0	0
Node 117: 46: SLV X+++	120	0	-103	0	0	0
Node 117: 47: SLV X+-+	120	0	-103	0	0	0
Node 117: 48: SLV X++-	120	0	-102	0	0	0
Node 117: 49: SLV X+	120	0	-103	0	0	0
Node 117: 49: 5EV X1				_	_	0
	120	0	-103	0	0	_
Node 117: 51: SLV X+	121	0	-103	0	0	0
Node 117: 52: SLV X-+-	120	0	-103	0	0	0
Node 117: 53: SLV X	120	0	-103	0	0	0
Node 117: 54: SLV Y+++	120	0	-103	0	0	0
Node 117: 55: SLV Y-++	120	0	-103	0	0	0
Node 117: 56: SLV Y++-	120	0	-102	0	0	0
Node 117: 57: SLV Y-+-	120	0	-102	0	0	0
Node 117: 58: SLV Y+-+	121	0	-103	0	0	0
Node 117: 59: SLV Y+	121	0	-103	0	0	0
Node 117: 60: SLV Y+	120	0	-103	0	0	0
Node 117: 61: SLV Y	120	0	-103	0	0	0
Node 117: 62: SLV Z+++	121	0	-103	0	0	0
Node 117: 63: SLV Z-++	121	0	-103	0	0	0
Node 117: 64: SLV Z+-+	121	0	-103	0	0	0
Node 117: 64: 3EV Z+	121	0	-103	0	0	0
Node 117: 66: SLV Z++-	121	0	-103 -102	0	0	0
Node 117: 67: SLV Z-+-	120	0	-102 103	0	0	0
Node 117: 68: SLV Z+	120	0	-102	0	0	0
Node 117: 69: SLV Z	120	0	-103	0	0	0
Node 118: 46: SLV X+++	120	0	-103	0	0	0
Node 118: 47: SLV X+-+	120	0	-103	0	0	0
Node 118: 48: SLV X++-	120	0	-103	0	0	0
Node 118: 49: SLV X+	120	0	-102	0	0	0
Node 118: 50: SLV X-++	121	0	-103	0	0	0
Node 118: 51: SLV X+	120	0	-103	0	0	0
Node 118: 52: SLV X-+-	120	0	-103	0	0	0
Node 118: 53: SLV X	120	0	-103	0	0	0
Node 118: 54: SLV Y+++	121	0	-103	0	0	0
Node 118: 55: SLV Y-++	121	0	-103	0	0	0
Node 118: 55: 5LV Y++-	120	0	-103	0	0	0
Node 118: 50: SLV Y++-	120	0	-103 -103	0	0	0
Node 118: 57: SLV Y-+-					_	
I MOUGHT X: 2X, 21 // A+-+	120	0	-103	0	0	0

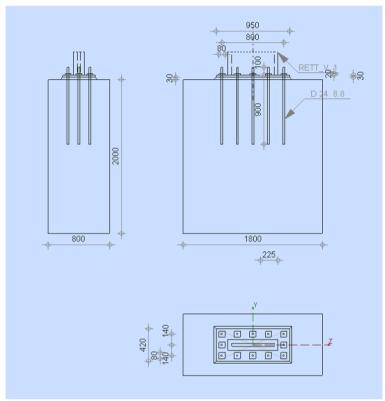
Node 118: 59: SLV Y+	120	0	-103	0	0	0
Node 118: 60: SLV Y+	120	0	-102	0	0	0
Node 118: 61: SLV Y	120	0	-102	0	0	0
Node 118: 62: SLV Z+++	121	0	-103	0	0	0
Node 118: 63: SLV Z-++	121	0	-103	0	0	0
Node 118: 64: SLV Z+-+	121	0	-103	0	0	0
		_			_	
Node 118: 65: SLV Z+	121	0	-103	0	0	0
Node 118: 66: SLV Z++-	120	0	-102	0	0	0
Node 118: 67: SLV Z-+-	120	0	-102	0	0	0
Node 118: 68: SLV Z+	120	0	-102	0	0	0
Node 118: 69: SLV Z	120	0	-102	0	0	0
Node 123: 46: SLV X+++	0	0	-1	0	0	0
Node 123: 47: SLV X+-+	-6	1	-1	0	0	0
Node 123: 48: SLV X++-	0	0	-1	0	0	0
Node 123: 49: SLV X+	-6	1	-1	0	0	0
Node 123: 50: SLV X-++	5	-1	-1	0	0	0
Node 123: 51: SLV X+	-1	0	-1	0	0	0
Node 123: 52: SLV X-+-	5	-1	-1	0	0	0
Node 123: 53: SLV X	-1	0	-1	0	0	0
Node 123: 54: SLV Y+++	9	-2	-1	0	0	0
Node 123: 55: SLV Y-++	10	-2	-1	0	0	0
Node 123: 56: SLV Y++-	9	-2	-1	0	0	0
Node 123: 57: SLV Y-+-	10	-2	-1	0	0	0
Node 123: 58: SLV Y+-+	-11	2	-1	0	0	0
Node 123: 59: SLV Y+	-9	2	-1	0	0	0
Node 123: 60: SLV Y+	-11	2	-1	0	0	0
Node 123: 61: SLV Y	-9	2	-1	0	0	0
Node 123: 62: SLV Z+++	2	-1	-1	0	0	0
Node 123: 63: SLV Z-++	3	-1	-1	0	0	0
Node 123: 64: SLV Z+-+	-4	1	-1	0	0	0
Node 123: 65: SLV Z+	-4	1	-1	0	0	0
Node 123: 66: SLV Z++-	2	-1	-1	0	0	0
Node 123: 67: SLV Z-+-	3	-1 -1	-1	0	0	0
Node 123: 68: SLV Z+	-4	-1 1	-1 -1	0	0	0
Node 123: 68: SLV Z	-4	1	-1 -1	0	0	0
Node 124: 46: SLV X+++	-4	0	-1	0	0	0
Node 124: 46: SLV X+++	2	0	-1 -1	0	0	0
Node 124: 47: SLV X+	-4	0	-1 -1	0	0	0
Node 124: 48: SLV X+	2	0	-1 -1	0	0	0
Node 124: 49: SLV X-++	-3	0	-1	0	0	0
Node 124: 50: 5EV X+	3	0	-1	0	0	0
Node 124: 51: 5LV X	-3	0	-1 -1	0	0	0
Node 124: 52: 5LV X	3	0	-1	0	0	0
Node 124: 53: 5LV X	-10	0	-1 -1	0	0	0
					_	_
Node 124: 55: SLV Y-++ Node 124: 56: SLV Y++-	-10 10	0	-1 1	0	0 0	0 0
	-10	0	-1	0	_	_
Node 124: 57: SLV Y-+-	-10	0	-1	0	0	0
Node 124: 58: SLV Y+-+	9	0	-1	0	0	0
Node 124: 59: SLV Y+	9	0	-1	0	0	0
Node 124: 60: SLV Y+	9	0	-1	0	0	0
Node 124: 61: SLV Y	9	0	-1	0	0	0
Node 124: 62: SLV Z+++	-4	0	-1	0	0	0
Node 124: 63: SLV Z-++	-3	0	-1	0	0	0
Node 124: 64: SLV Z+-+	2	0	-1	0	0	0
Node 124: 65: SLV Z+	3	0	-1	0	0	0
Node 124: 66: SLV Z++-	-4	0	-1	0	0	0
Node 124: 67: SLV Z-+-	-3	0	-1	0	0	0
Node 124: 68: SLV Z+	2	0	-1	0	0	0
Node 124: 69: SLV Z	3	0	-1	0	0	0
Node 125: 46: SLV X+++	-43	0	176	0	0	0
Node 125: 47: SLV X+-+	-43	0	177	0	0	0
Node 125: 48: SLV X++-	-43	0	176	0	0	0
Node 125: 49: SLV X+	-43	0	177	0	0	0
Node 125: 50: SLV X-++	-43	0	177	0	0	0
Node 125: 51: SLV X+	-43	0	178	0	0	0

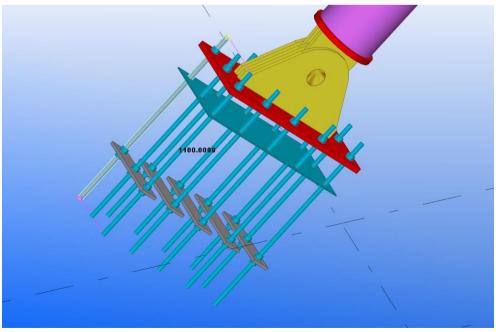
Node 125: 52: SLV X-+-	-43	0	176	0	0	0
Node 125: 53: SLV X	-43	0	177	0	0	0
Node 125: 54: SLV Y+++	-43	0	175	0	0	0
	_			_	_	_
Node 125: 55: SLV Y-++	-43	0	175	0	0	0
Node 125: 56: SLV Y++-	-43	0	175	0	0	0
Node 125: 57: SLV Y-+-	-43	0	175	0	0	0
Node 125: 58: SLV Y+-+	-44	0	178	0	0	0
Node 125: 59: SLV Y+	-44	0	179	0	0	0
Node 125: 60: SLV Y+	-44	0	178	0	0	0
Node 125: 61: SLV Y	-44	0	178	0	0	0
				_		
Node 125: 62: SLV Z+++	-43	0	177	0	0	0
Node 125: 63: SLV Z-++	-43	0	177	0	0	0
Node 125: 64: SLV Z+-+	-44	0	178	0	0	0
Node 125: 65: SLV Z+	-44	0	178	0	0	0
Node 125: 66: SLV Z++-	-43	0	176	0	0	0
Node 125: 67: SLV Z-+-	-43	0	176	0	0	0
Node 125: 68: SLV Z+	-43	0	177	0	0	0
	_	0		0	0	0
Node 125: 69: SLV Z	-43		177			_
Node 126: 46: SLV X+++	-44	0	177	0	0	0
Node 126: 47: SLV X+-+	-43	0	176	0	0	0
Node 126: 48: SLV X++-	-43	0	177	0	0	0
Node 126: 49: SLV X+	-43	0	176	0	0	0
Node 126: 50: SLV X-++	-43	0	177	0	0	0
Node 126: 51: SLV X+	-43	0	176	0	0	0
Node 126: 52: SLV X-+-	-43 -43	0	177	0	0	0
	_	_		=	-	_
Node 126: 53: SLV X	-43	0	176	0	0	0
Node 126: 54: SLV Y+++	-44	0	178	0	0	0
Node 126: 55: SLV Y-++	-44	0	178	0	0	0
Node 126: 56: SLV Y++-	-44	0	178	0	0	0
Node 126: 57: SLV Y-+-	-44	0	178	0	0	0
Node 126: 58: SLV Y+-+	-43	0	175	0	0	0
Node 126: 59: SLV Y+	-43	0	175	0	0	0
Node 126: 60: SLV Y+	-43	0	175	0	0	0
	_	_		_	-	_
Node 126: 61: SLV Y	-43	0	175	0	0	0
Node 126: 62: SLV Z+++	-44	0	178	0	0	0
Node 126: 63: SLV Z-++	-44	0	178	0	0	0
Node 126: 64: SLV Z+-+	-43	0	177	0	0	0
Node 126: 65: SLV Z+	-43	0	177	0	0	0
Node 126: 66: SLV Z++-	-43	0	177	0	0	0
Node 126: 67: SLV Z-+-	-43	0	177	0	0	0
Node 126: 68: SLV Z+	-43	0	176	0	0	0
Node 126: 69: SLV Z	-43	0	176	0	0	0
Node 129: 46: SLV X+++	-120	0	-103	0	0	0
Node 129: 47: SLV X+-+	-120	0	-102	0	0	0
Node 129: 48: SLV X++-	-120	0	-102	0	0	0
Node 129: 49: SLV X+	-120	0	-102	0	0	0
Node 129: 50: SLV X-++	-120	0	-102	0	0	0
Node 129: 51: SLV X+	-120	0	-102	0	0	0
Node 129: 52: SLV X-+-	-120	0	-102	0	0	0
				_	_	
Node 129: 53: SLV X	-119	0	-102	0	0	0
Node 129: 54: SLV Y+++	-120	0	-103	0	0	0
Node 129: 55: SLV Y-++	-120	0	-103	0	0	0
Node 129: 56: SLV Y++-	-120	0	-102	0	0	0
Node 129: 57: SLV Y-+-	-120	0	-102	0	0	0
Node 129: 58: SLV Y+-+	-120	0	-102	0	0	0
Node 129: 59: SLV Y+	-120	0	-102	0	0	0
Node 129: 60: SLV Y+	-120	0	-102	0	0	0
Node 129: 61: SLV Y	-119	0	-102	0	0	0
Node 129: 62: SLV Z+++	-120	0	-103	0	0	0
Node 129: 63: SLV Z-++	-120	0	-103	0	0	0
Node 129: 64: SLV Z+-+	-120	0	-103	0	0	0
Node 129: 65: SLV Z+	-120	0	-102	0	0	0
Node 129: 66: SLV Z++-	-120	0	-102	0	0	0
Node 129: 67: SLV Z-+-	-120	0	-102	0	0	0
Node 129: 68: SLV Z+	-119	0	-102	0	0	0
1400C 123. 00. 3LV 2T	.113	U	102	U	U	U

Node 129: 69: SLV Z	-119	0	-102	0	0	0
Node 129. 69. 3LV Z Node 130: 46: SLV X+++	-119	0	-102	0	0	0
Node 130: 40: SLV X+-+	-120	0	-102	0	0	0
Node 130: 47: 3LV X+	-120	0	-102	0	0	0
Node 130: 48: SLV X+	-120	0	-102	0	0	0
Node 130: 49: 3LV X+ Node 130: 50: SLV X-++	-120	0	-102	0	0	0
Node 130: 50: SLV X-++	-120	0	-102	0	0	0
Node 130: 51: SLV X-+-	-120	0	-102	0	0	0
Node 130: 52: SLV X	-120	0	-102	0	0	0
Node 130: 53: SLV X	-120	0	-102	0	0	0
Node 130: 55: SLV Y-++	-120	0	-102	0	0	0
Node 130: 56: SLV Y++-	-119	0	-102	0	0	0
Node 130: 57: SLV Y-+-	-119	0	-102	0	0	0
Node 130: 58: SLV Y+-+	-120	0	-103	0	0	0
Node 130: 59: SLV Y+	-120	0	-103	0	0	0
Node 130: 60: SLV Y+	-120	0	-102	0	0	0
Node 130: 61: SLV Y	-120	0	-102	0	0	0
Node 130: 62: SLV Z+++	-120	0	-102	0	0	0
Node 130: 63: SLV Z-++	-120	0	-102	0	0	0
Node 130: 64: SLV Z+-+	-120	0	-103	0	0	0
Node 130: 65: SLV Z+	-120	0	-103	0	0	0
Node 130: 66: SLV Z++-	-119	0	-102	0	0	0
Node 130: 67: SLV Z-+-	-119	0	-102	0	0	0
Node 130: 68: SLV Z+	-120	0	-102	0	0	0
Node 130: 69: SLV Z	-120	0	-102	0	0	0
Node 133: 46: SLV X+++	0	0	-1	0	0	0
Node 133: 47: SLV X+-+	0	0	-1	0	0	0
Node 133: 48: SLV X++-	0	0	-1	0	0	0
Node 133: 49: SLV X+	0	0	-1	0	0	0
Node 133: 50: SLV X-++	0	0	-2	0	0	0
Node 133: 51: SLV X+	0	0	-2	0	0	0
Node 133: 52: SLV X-+-	0	0	-2	0	0	0
Node 133: 53: SLV X	0	0	-2	0	0	0
Node 133: 54: SLV Y+++	0	0	-1	0	0	0
Node 133: 55: SLV Y-++	0	0	-1	0	0	0
Node 133: 56: SLV Y++-	0	0	-1	0	0	0
Node 133: 57: SLV Y-+-	0	0	-1	0	0	0
Node 133: 58: SLV Y+-+	0	0	-1	0	0	0
Node 133: 59: SLV Y+	0	0	-2	0	0	0
Node 133: 60: SLV Y+	0	0	-1	0	0	0
Node 133: 61: SLV Y	0	0	-2	0	0	0
Node 133: 62: SLV Z+++	0	0	-1	0	0	0
Node 133: 63: SLV Z-++	0	0	-2	0	0	0
Node 133: 64: SLV Z+-+	0	0	-1	0	0	0
Node 133: 65: SLV Z+	0	0	-2	0	0	0
Node 133: 66: SLV Z++-	0	0	-1	0	0	0
Node 133: 67: SLV Z-+-	0	0	-1	0	0	0
Node 133: 68: SLV Z+	0	0	-1	0	0	0
Node 133: 69: SLV Z	0	0	-1	0	0	0
Node 134: 46: SLV X+++	0	-2	-1	0	0	0
Node 134: 47: SLV X+-+	0	1	-1	0	0	0
Node 134: 48: SLV X++-	0	-2	-1	0	0	0
Node 134: 49: SLV X+	0	1	-1	0	0	0
Node 134: 50: SLV X-++	0	-1	-2	0	0	0
Node 134: 51: SLV X+	0	2	-2	0	0	0
Node 134: 52: SLV X-+-	0	-1	-2	0	0	0
Node 134: 53: SLV X	0	2	-2	0	0	0
Node 134: 54: SLV Y+++	0	-5	-1	0	0	0
N. I 404 EE CIVIV	0	-4	-2	0	0	0
Node 134: 55: SLV Y-++		_		0	0	0
Node 134: 56: SLV Y++-	0	-5	-1	_		-
Node 134: 56: SLV Y++- Node 134: 57: SLV Y-+-	0 0	-4	-1	0	0	0
Node 134: 56: SLV Y++- Node 134: 57: SLV Y-+- Node 134: 58: SLV Y+-+	0 0 0	-4 4	-1 -1	0	0 0	0
Node 134: 56: SLV Y++- Node 134: 57: SLV Y-+- Node 134: 58: SLV Y+-+ Node 134: 59: SLV Y+	0 0 0 0	-4 4 5	-1 -1 -1	0 0 0	0 0 0	0 0 0
Node 134: 56: SLV Y++- Node 134: 57: SLV Y-+- Node 134: 58: SLV Y+-+	0 0 0	-4 4	-1 -1	0	0 0	0

Node 134: 62: SLV Z+++	0	-1	-1	0	0	0
Node 134: 63: SLV Z-++	0	-1	-2	0	0	0
Node 134: 64: SLV Z+-+	0	1	-1	0	0	0
Node 134: 65: SLV Z+	0	1	-1	0	0	0
Node 134: 66: SLV Z++-	0	-1	-1	0	0	0
Node 134: 67: SLV Z-+-	0	-1	-1	0	0	0
Node 134: 68: SLV Z+	0	1	-1	0	0	0
Node 134: 69: SLV Z	0	1	-1	0	0	0
Node 135: 46: SLV X+++	43	0	177	0	0	0
Node 135: 47: SLV X+-+	44	0	178	0	0	0
Node 135: 47: 52V X++-	43	0	176	0	0	0
Node 135: 49: SLV X+	43	0	177	0	0	0
Node 135: 50: SLV X-++	43	0	175	0	0	0
Node 135: 50: 5LV X+	43	0	176	0	0	0
Node 135: 51: 5LV X	43	0	175	0	0	0
	_			_	_	
Node 135: 53: SLV X	43	0	176	0	0	0
Node 135: 54: SLV Y+++	43	0	175	0	0	0
Node 135: 55: SLV Y-++	43	0	175	0	0	0
Node 135: 56: SLV Y++-	43	0	175	0	0	0
Node 135: 57: SLV Y-+-	43	0	174	0	0	0
Node 135: 58: SLV Y+-+	44	0	178	0	0	0
Node 135: 59: SLV Y+	44	0	178	0	0	0
Node 135: 60: SLV Y+	44	0	178	0	0	0
Node 135: 61: SLV Y	44	0	178	0	0	0
Node 135: 62: SLV Z+++	43	0	176	0	0	0
Node 135: 63: SLV Z-++	43	0	176	0	0	0
Node 135: 64: SLV Z+-+	43	0	177	0	0	0
Node 135: 65: SLV Z+	43	0	177	0	0	0
Node 135: 66: SLV Z++-	43	0	176	0	0	0
Node 135: 67: SLV Z-+-	43	0	175	0	0	0
Node 135: 68: SLV Z+	43	0	177	0	0	0
Node 135: 69: SLV Z	43	0	176	0	0	0
Node 136: 46: SLV X+++	43	0	176	0	0	0
Node 136: 47: SLV X+-+	43	0	175	0	0	0
Node 136: 48: SLV X++-	43	0	176	0	0	0
Node 136: 49: SLV X+	43	0	175	0	0	0
Node 136: 50: SLV X-++	44	0	177	0	0	0
Node 136: 51: SLV X+	43	0	176	0	0	0
Node 136: 52: SLV X-+-	43	0	177	0	0	0
Node 136: 53: SLV X	43	0	176	0	0	0
Node 136: 54: SLV Y+++	44	0	178	0	0	0
Node 136: 55: SLV Y-++	44	0	178	0	0	0
Node 136: 56: SLV Y++-	44	0	178	0	0	0
Node 136: 57: SLV Y-+-	44	0	178	0	0	0
Node 136: 58: SLV Y+-+	43	0	175	0	0	0
Node 136: 59: SLV Y+	43	0	175	0	0	0
Node 136: 60: SLV Y+	43	0	174	0	0	0
Node 136: 61: SLV Y	43	0	175	0	0	0
Node 136: 62: SLV Z+++	43	0	177	0	0	0
Node 136: 62: SLV Z-++	43	0	177	0	0	0
Node 136: 63: SLV Z+-+	43	0	176	0	0	0
		0				0
Node 136: 65: SLV Z+	43		176	0	0	
Node 136: 66: SLV Z++-	43	0	176	0	0	0
Node 136: 67: SLV Z-+-	43	0	176	0	0	0
Node 136: 68: SLV Z+	43	0	175	0	0	0
Node 136: 69: SLV Z	43	0	176	0	0	0

7.2. VERIFICA DEI GIUNTI DI BASE


Nel seguito si riportano le verifiche delle 3 tipologie di giunzioni illustrate nei precedenti paragrafi considerando le massime sollecitazioni registrate per ognuno di essi.


7.2.1. Verifica attacco tirante posteriore

Il tirante posteriore è collegato con un perno ad una piastra con tirafondi annegati nelle costole in c.a. La piastra di base ha uno spessore di 30mm e ospita 3 piastre verticali che si alternano a 2 orecchie fissate al tubo tirante. I tirafondi sono 12 barre M24 8.8.

Il massimo tiro registrato nei calcoli risulta essre pari a:

Nmax = 665 kN

Coefficiente

0,86

Autodesk Robot Structural Analysis Professional 2018 Calcolo del giunto incastrato Trave - Trave EN 1993-1-8:2005/AC:2009 Generale N. giunto: Trave - trave Nome del giunto Geometria Lato sinistro Trave Profilato: **IPE 550** -180,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave b_{fbl} = 210 [mm] Larghezza della sezione della trave t_{wbl} = 11 [mm] Spessore dell'anima della sezione della trave t_{fbl} = 17 [mm] Spessore dell'ala della sezione della trave r_{bl} = 24 [mm] Raggio di raccordo della sezione della trave A_{bl} = 134,00 [cm²] Area della sezione della trave I_{vbl} = 67120,00 [cm4] Momento di inerzia della sezione della trave Materiale: S 275 275,00 [MPa] Resistenza f_{vh} = Lato destro Trave Profilato: IPE 550 0,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave h_{br} = 210 [mm] Larghezza della sezione della trave $b_{fbr} =$ 11 [mm] Spessore dell'anima della sezione della trave twhr = 17 [mm] Spessore dell'ala della sezione della trave tfhr = [mm] Raggio di raccordo della sezione della trave $r_{br} =$ 134,00 [cm²] Area della sezione della trave $A_{hr} =$ 67120,00 [cm⁴] Momento di inerzia della sezione della trave I_{vbr} = Materiale: S 275 275,00 [MPa] Resistenza $f_{vh} =$ Bulloni Il piano di taglio attraversa la parte NON FILETTATA del bullone. d = 24 [mm] Diametro del bullone Classe = 10.9 Classe del bullone 254,16 [kN] Resistenza del bullone alla trazione $F_{tRd} =$ 2 Numero di colonne dei bulloni n_h = 6 Numero di file di bulloni n_v = 85 [mm] Distanza del primo bullone dal bordo superiore della lamiera estrema h₁ = Distanza orizzontale e_i = 110 [mm] Distanza verticale p_i = 80;80;80;80;80 [mm] Lamiera 570 [mm] Altezza della lamiera h_{pr} = [mm] Larghezza della lamiera b_{pr} = 210 Spessore della lamiera t_{pr} = 20 [mm] Materiale: 275,00 [MPa] Resistenza $f_{vpr} =$ Saldature in angolo esterno 10 Saldatura dell'anima a_w = [mm] 10 Saldatura dell'ala a_f = [mm] Coefficienti di materiale 1.00 Coefficiente di sicurezza parziale [2.2] $g_{M0} =$ g_{M1} = 1.00 Coefficiente di sicurezza parziale [2.2] 1,25 Coefficiente di sicurezza parziale [2.2] $g_{M2} =$ g_{M3} = 1,25 Coefficiente di sicurezza parziale [2.2]

Stato limite ultimo (SLU)

Carichi

Condizione Calcolo manuale.

 $\begin{array}{lll} M_{b1,Ed} = & 240,00 & [kN^*m] & \text{Momento flettente nella trave destra} \\ V_{b1,Ed} = & 90,00 & [kN] & \text{Azione di taglio nella trave destra} \\ N_{b1,Ed} = & 600,00 & [kN] & \text{Azione assiale nella trave destra} \\ \end{array}$

Risultati

Resistenze della trave

TRAZIONE

 $A_b = 134,00$ [cm²] Area di sezione EN1993-1-1:[6.2.3]

 $N_{tb,Rd} = A_b f_{yb} / g_{M0}$

N_{tb,Rd} = 3685,00 [kN] Resistenza di calcolo della sezione alla trazione EN1993-1-1:[6.2.3]

TAGLIO

 $A_{vb} = 71,93$ [cm²] Area al taglio EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \ddot{O}3) / g_{M0}$

 $V_{\text{cb,Rd}} = 1141,97 \quad \text{[kN]} \qquad \text{Resistenza di calcolo della sezione al taglio} \qquad \text{EN1993-1-1:[6.2.6.(2)]} \\ V_{\text{b1,Ed}} / V_{\text{cb,Rd}} \leq 1,0 \qquad 0,08 < 1,00 \qquad \text{verificato} \qquad (0,08) \\ \end{cases}$

FLESSIONE - MOMENTO PLASTICO (SENZA RINFORZI)

 $W_{plb} = 2787,01$ [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / g_{M0}$

M_{b,pl,Rd} = 766,43 [kN*m] Resistenza plastica della sezione alla flessione (senza rinforzi) EN1993-1-1:[6.2.5.(2)]

FLESSIONE AL CONTATTO DELLA PIASTRA O DELL'ELEMENTO GIUNTO

 $W_{pl} = \qquad 2787,01 \qquad \text{[cm3]} \qquad \qquad \text{Fattore plastico della sezione} \qquad \qquad \text{EN1993-1-1:[6.2.5]}$

 $M_{cb,Rd} = W_{pl} f_{yb} / g_{M0}$

M_{cb,Rd} = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5]

ALA ED ANIMA ALLA COMPRESSIONE

 $M_{cb,Rd} = 766,43$ [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5] $h_f = 533$ [mm] Distanza tra i centri di gravità delle ali [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F_{c,fb,Rd} = 1438,49 [kN] Resistenza dell'ala compressa e dell'anima [6.2.6.7.(1)]

Parametri geometrici del giunto

LUNGHEZZE EFFICACI E PARAMETRI - PIASTRA D'ESTREMITA

Nr	m	m _x	е	ex	р	I _{eff,cp}	I _{eff,nc}	l _{eff,1}	l _{eff,2}	$I_{\rm eff,cp,g}$	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	38	-	50	-	80	240	232	232	232	200	165	165	165
2	38	-	50	-	80	240	215	215	215	160	80	80	80
3	38	-	50	-	80	240	215	215	215	160	80	80	80
4	38	-	50	-	80	240	215	215	215	160	80	80	80
5	38	-	50	-	80	240	215	215	215	160	80	80	80
6	38	-	50	-	80	240	232	232	232	200	165	165	165

m – Distanza del bullone dall'anima

m_x – Distanza del bullone dall'ala della trave

e – Distanza del bullone dal bordo esteriore

e_x – Distanza del bullone dal bordo esteriore orizzontale

p – Distanza dei bulloni

 $I_{\text{eff,cp}} \quad \ - \text{Lunghezza efficace per un bullone nei meccanismi circolari}$

 $I_{\text{eff,nc}} \quad - \text{Lunghezza efficace per un bullone nei meccanismi non circolari}$

 $l_{eff,1}$ — Lunghezza efficace per un bullone per il modo 1 $l_{eff,2}$ — Lunghezza efficace per un bullone per il modo 2

l_{eff,cp,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi circolari l_{eff,nc,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi non circolari

 $l_{\text{eff,1,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 1 $l_{\text{eff,2,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 2

Resistenza del giunto alla trazione

 $F_{t,Rd} =$ 254,16 [kN] Resistenza del bullone alla trazione [Tabella 3.4] $B_{p,Rd} =$ 466,87 [kN] Resistenza del bullone al passaggio della testa [Tabella 3.4]

F_{t,fc,Rd} – resistenza dell'ala della colonna alla flessione
F_{t,wc,Rd} – resistenza dell'anima della colonna alla trazione

F_{t,ep,Rd} – resistenza della lamiera alla flessione F_{t,wb,Rd} – resistenza dell'anima alla trazione

 $\begin{aligned} F_{t,fc,Rd} &= Min \left(F_{T,1,fc,Rd} , F_{T,2,fc,Rd} , F_{T,3,fc,Rd} \right) & [6.2.6.4] , [Tab.6.2] \\ F_{t,wc,Rd} &= w \ b_{eff,t,wc} \ t_{wc} \ f_{yc} \ / \ g_{M0} & [6.2.6.3.(1)] \\ F_{t,ep,Rd} &= Min \left(F_{T,1,ep,Rd} , F_{T,2,ep,Rd} , F_{T,3,ep,Rd} \right) & [6.2.6.5] , [Tab.6.2] \\ F_{t,wb,Rd} &= b_{eff,t,wb} \ t_{wb} \ f_{yb} \ / \ g_{M0} & [6.2.6.8.(1)] \end{aligned}$

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(3+2)}$ - $\sum_{2}^{2} F_{tj,Rd} = 461,50$ - 274,54	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)}$ - $\sum_{2}^{1} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(5+4)} - \sum_4 {}^4F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_4 F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)} - \sum_{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	hj	$F_{tj,Rd}$	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	431,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA TRAZIONE N_{i,Rd}

 $N_{j,Rd} = \sum F_{tj,Rd}$

N_{i,Rd} = 1785,49 [kN] Resistenza del giunto alla trazione [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,34 < 1,00 verificato (0,34)

Resistenza del giunto alla flessione

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} = 1438,49$	1438,49	Ala della trave - compressione

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

Ft2,Rd,comp - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1} F_{tj,Rd} = 1438,49 - 431,24$	1007,25	Ala della trave - compressione
$F_{t,ep,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1438,49 - 705,78$	732,71	Ala della trave - compressione
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1438,49 - 892,74$	545,74	Ala della trave - compressione
$F_{t,ep,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd}$ - $\sum_{1}^{4} F_{tj,Rd}$ = 1438,49 - 1123,50	314,99	Ala della trave - compressione
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 6

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	84,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{5} F_{tj,Rd} = 1438,49 - 1354,25$	84,24	Ala della trave - compressione
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	h _j	$\mathbf{F}_{tj,Rd}$	$\mathbf{F}_{t,fc,Rd}$	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	84,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA FLESSIONE M_{j,Rd}

$M_{j,Rd}$	=	7	h	Fti Rd
ivij,ka	_	/	111	i tj,ka

$M_{j,Rd} =$	456,12	[kN*m]	Resistenza del giunto alla flessione	[6.2]	
$M_{b1,Ed}$ / M	$I_{j,Rd} \leq 1,0$		0,53 < 1,00	verificato	(0,53)
Verifica d	ell'interazior	ne M+N			

$M_{b1,Ed} / M_{j,Rd} + N_{b1,Ed} / N_{j,Rd} \le 1$		[6.2.	5.1.(3)]
$M_{b1,Ed}$ / $M_{j,Rd}$ + $N_{b1,Ed}$ / $N_{j,Rd}$	0,86 < 1,00	verificato	(0,86)

Resistenza del giunto al taglio $V_{j,Rd}$

a _v =	0,60		Coefficiente per il calcolo di F _{v,Rd}	[Tabella 3.4]
b _{Lf} =	0,99		Coefficiente di riduzione per i giunti lunghi	[3.8]
$F_{v,Rd} =$	215,34	[kN]	Resistenza di un bullone al taglio	[Tabella 3.4]
$F_{t,Rd,max} =$	254,16	[kN]	Resistenza di un bullone alla trazione	[Tabella 3.4]
$F_{b,Rd,int} =$	320,18	[kN]	Resistenza di un bullone intermedio alla pressione	[Tabella 3.4]
$F_{b,Rd,ext} =$	412,80	[kN]	Resistenza di un bullone estremo alla pressione	[Tabella 3.4]

	Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F _{tj,Rd,M}	F _{tj,Ed,M}	F _{tj,Ed}	$F_{vj,Rd}$
--	----	----------------------	----------------------	----------------------	----------------------	--------------------	-------------

Nr	F _{tj,Rd,N}	$F_{tj,Ed,N}$	F _{tj,Rd,M}	F _{tj,Ed,M}	$\mathbf{F}_{tj,Ed}$	F _{vj,Rd}
1	431,24	144,92	431,24	226,91	371,83	205,65
2	274,54	92,26	274,54	144,46	236,71	287,42
3	186,96	62,83	186,96	98,38	161,21	333,12
4	230,75	77,54	230,75	121,42	198,96	310,27
5	230,75	77,54	230,75	121,42	198,96	310,27
6	431,24	144,92	84,24	44,33	189,24	316,15

 $\begin{array}{ll} F_{tj,Rd,N} & - \mbox{Resistenza di una fila di bulloni alla trazione pura} \\ F_{tj,Ed,N} & - \mbox{Forza in una fila di bulloni dovuta all'azione assiale} \\ F_{tj,Rd,M} & - \mbox{Resistenza di una fila di bulloni alla flessione pura} \\ F_{tj,Ed,M} & - \mbox{Forza in una fila di bulloni dovuta al momento} \\ F_{tj,Ed} & - \mbox{Forza di trazione massima in una fila di bulloni} \\ F_{vj,Rd} & - \mbox{Resistenza ridotta della fila di bulloni} \\ \end{array}$

$$\begin{split} F_{tj,Ed,N} &= N_{j,Ed} \; F_{tj,Rd,N} \; \middle / \; N_{j,Rd} \\ F_{tj,Ed,M} &= M_{j,Ed} \; F_{tj,Rd,M} \; \middle / \; M_{j,Rd} \\ F_{tj,Ed} &= F_{tj,Ed,N} \; + \; F_{tj,Ed,M} \end{split}$$

 $F_{vj,Rd} = Min (n_h F_{v,Ed} (1 - F_{tj,Ed} / (1.4 n_h F_{t,Rd,max}), n_h F_{v,Rd}, n_h F_{b,Rd}))$

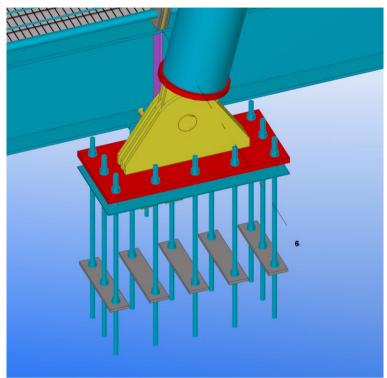
$V_{j,Rd} =$	1762,88	[kN]	Resistenza del giunto al taglio V _{j,Rd}	[Tabella 3.4	1]
$V_{b1,Ed} / V_{j,Rd} \le 1,0$			0,05 < 1,00	verificato	(0,05)
Resistenza delle saldature		ature			
A _w = 165,70 [cm ²] Area di tutte le saldatu		[cm ²]	Area di tutte le saldature	[4.5.3.2(2	2)]
$A_{wy} =$	72,18	[cm ²]	Area delle saldature orizzontali	[4.5.3.2(2	2)]
A _{wz} = 93,52 [cm ²] Area delle saldature vert		[cm ²]	Area delle saldature verticali	[4.5.3.2(2	2)]
I _{wy} = 69261,51 [cm ⁴]		1 [cm ⁴]	Momento di inerzia del sistema di saldature rispetto all'asse	oriz. [4.5.3.2(5	5)]
$s_{max} = t_{max} = 94,21$ [MPa]		[MPa]	Sollecitazione normale nella saldatura	[4.5.3.2(6	5)]
s^=t^ =	82,89	[MPa]	Sollecitazione nella saldatura verticale	[4.5.3.2(5	5)]
t _{II} =	9,62	[MPa]	Sollecitazione tangenziale	[4.5.3.2(5	5)]
b _w = 0,85			Coefficiente di correlazione	[4.5.3.2(7	7)]
$\ddot{O}[s_{max}^2 + 3*(t_{max}^2)] \le f_u/(b_w*g_{M2})$		$\leq f_u/(b_w*g_{M2})$	188,42 < 404,71	verificato	(0,47)
$\ddot{O}[s_{^2} + 3*(t_{^2} + t_{11}^2)] \le f_u/(b_w * g_{M2})$		$f_u/(b_w*g_{M2})$	166,62 < 404,71	verificato	(0,41)
s^ ≤ 0.9*fu	/g _{M2}		94,21 < 309,60	verificato	(0,30)

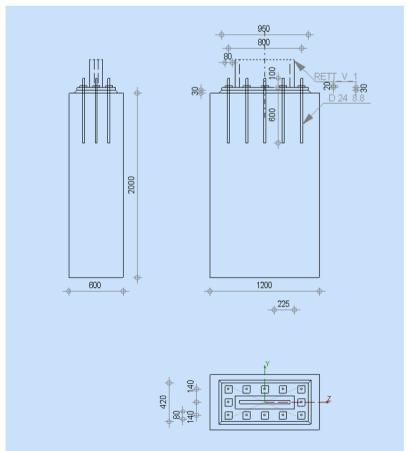
Rigidezza del giunto

L'azione assiale nella trave sorpassa il 5% di resistenza $N_{\text{pl,Rd}}$. Conforme al punto 6.3.1.(4) la rigidezza del giunto non può essere calcolata.

Il componente più debole:

ALA E ANIMA DELLA TRAVE IN COMPRESSIONE


Giunto conforme alla norma Coefficiente 0,86



7.2.2. Verifica piastra base portale

La giunzione di base dei montanti dei portali è identica alla giunzione dei tiranti posteriori.

Si registra una sollecitazione massima tagliante pari a 180 kN mentre lo sforzo normale, sempre di compressione oscilla tra -176 kN e -740 kN.

CASO 1

Autodesk Robot Structural Analysis Professional 2018 Coefficiente Calcolo del giunto incastrato Trave - Trave EN 1993-1-8:2005/AC:2009 0,86 Generale N. giunto: 5 Trave - trave Nome del giunto Geometria Lato sinistro Trave Profilato: **IPE 550** -180,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave b_{fbl} = 210 [mm] Larghezza della sezione della trave t_{wbl} = 11 [mm] Spessore dell'anima della sezione della trave t_{fbl} = 17 [mm] Spessore dell'ala della sezione della trave r_{bl} = 24 [mm] Raggio di raccordo della sezione della trave A_{bl} = 134,00 [cm²] Area della sezione della trave $I_{xbl} =$ 67120,00 [cm4] Momento di inerzia della sezione della trave Materiale: S 275 275,00 [MPa] Resistenza f_{vh} = Lato destro Trave Profilato: IPE 550 0,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave h_{br} = 210 [mm] Larghezza della sezione della trave $b_{fbr} =$ 11 [mm] Spessore dell'anima della sezione della trave twhr = 17 [mm] Spessore dell'ala della sezione della trave tfbr = [mm] Raggio di raccordo della sezione della trave $r_{br} =$ 134,00 [cm²] Area della sezione della trave $A_{hr} =$ 67120,00 [cm⁴] Momento di inerzia della sezione della trave I_{vbr} = Materiale: S 275 275,00 [MPa] Resistenza $f_{vb} =$ Bulloni Il piano di taglio attraversa la parte NON FILETTATA del bullone. d = 24 [mm] Diametro del bullone Classe = 10.9 Classe del bullone 254,16 [kN] Resistenza del bullone alla trazione $F_{tRd} =$ 2 Numero di colonne dei bulloni n_h = 6 Numero di file di bulloni n_v = 85 Distanza del primo bullone dal bordo superiore della lamiera estrema h1 = [mm] Distanza orizzontale e_i = 110 [mm] Distanza verticale p_i = 80;80;80;80;80 [mm] Lamiera 570 [mm] Altezza della lamiera h_{pr} = Larghezza della lamiera b_{pr} = 210 [mm] Spessore della lamiera t_{pr} = 20 [mm] Materiale: 275,00 [MPa] Resistenza $f_{vpr} =$ Saldature in angolo esterno 10 Saldatura dell'anima a_w = [mm] 10 Saldatura dell'ala a_f = [mm] Coefficienti di materiale 1.00 Coefficiente di sicurezza parziale [2.2] $g_{M0} =$ g_{M1} = 1.00 Coefficiente di sicurezza parziale [2.2] 1,25 Coefficiente di sicurezza parziale [2.2] $g_{M2} =$ g_{M3} = 1,25 Coefficiente di sicurezza parziale [2.2]

Stato limite ultimo (SLU)

Carichi

Condizione Calcolo manuale.

 $\begin{array}{lll} M_{b1,Ed} = & 240,00 & [kN^*m] & \text{Momento flettente nella trave destra} \\ V_{b1,Ed} = & 90,00 & [kN] & \text{Azione di taglio nella trave destra} \\ N_{b1,Ed} = & 600,00 & [kN] & \text{Azione assiale nella trave destra} \\ \end{array}$

Risultati

Resistenze della trave

TRAZIONE

 $A_b = 134,00$ [cm²] Area di sezione EN1993-1-1:[6.2.3]

 $N_{tb,Rd} = A_b f_{yb} / g_{M0}$

N_{tb,Rd} = 3685,00 [kN] Resistenza di calcolo della sezione alla trazione EN1993-1-1:[6.2.3]

TAGLIO

A_{vb} = 71,93 [cm²] Area al taglio EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \ddot{O}3) / g_{M0}$

 $V_{cb,Rd} = 1141,97$ [kN] Resistenza di calcolo della sezione al taglio EN1993-1-1:[6.2.6.(2)]

 $V_{\text{b1,Ed}} / V_{\text{cb,Rd}} \leq 1,0 \hspace{1cm} 0,08 < 1,00 \hspace{1cm} \text{verificato} \hspace{1cm} (0,08)$

FLESSIONE - MOMENTO PLASTICO (SENZA RINFORZI)

 $W_{plb} = 2787,01$ [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / g_{M0}$

M_{b,pl,Rd} = 766,43 [kN*m] Resistenza plastica della sezione alla flessione (senza rinforzi) EN1993-1-1:[6.2.5.(2)]

FLESSIONE AL CONTATTO DELLA PIASTRA O DELL'ELEMENTO GIUNTO

 $W_{pl} = \qquad 2787,01 \qquad \text{[cm3]} \qquad \qquad \text{Fattore plastico della sezione} \qquad \qquad \text{EN1993-1-1:[6.2.5]}$

 $M_{cb,Rd} = W_{pl} f_{yb} / g_{M0}$

M_{cb,Rd} = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5]

ALA ED ANIMA ALLA COMPRESSIONE

 $M_{cb,Rd} = 766,43$ [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5] $h_f = 533$ [mm] Distanza tra i centri di gravità delle ali [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F_{c,fb,Rd} = 1438,49 [kN] Resistenza dell'ala compressa e dell'anima [6.2.6.7.(1)]

Parametri geometrici del giunto

LUNGHEZZE EFFICACI E PARAMETRI - PIASTRA D'ESTREMITA

Nr	m	m _x	е	e _x	р	l _{eff,cp}	l _{eff,nc}	l _{eff,1}	l _{eff,2}	l _{eff,cp,g}	l _{eff,nc,g}	leff,1,g	l _{eff,2,g}
1	38	-	50	-	80	240	232	232	232	200	165	165	165
2	38	-	50	-	80	240	215	215	215	160	80	80	80
3	38	-	50	-	80	240	215	215	215	160	80	80	80
4	38	-	50	-	80	240	215	215	215	160	80	80	80
5	38	-	50	-	80	240	215	215	215	160	80	80	80
6	38	-	50	-	80	240	232	232	232	200	165	165	165

m – Distanza del bullone dall'anima

m_x – Distanza del bullone dall'ala della trave

e – Distanza del bullone dal bordo esteriore

e_x – Distanza del bullone dal bordo esteriore orizzontale

p – Distanza dei bulloni

 $I_{\text{eff,cp}}$ — Lunghezza efficace per un bullone nei meccanismi circolari

 $I_{\text{eff,nc}} \quad - \text{Lunghezza efficace per un bullone nei meccanismi non circolari}$

 $l_{eff,1}$ — Lunghezza efficace per un bullone per il modo 1 $l_{eff,2}$ — Lunghezza efficace per un bullone per il modo 2

l_{eff,cp,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi circolari l_{eff,nc,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi non circolari

 $l_{\text{eff,1,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 1 $l_{\text{eff,2,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 2

Resistenza del giunto alla trazione

 $F_{t,Rd} =$ 254,16 [kN] Resistenza del bullone alla trazione [Tabella 3.4] $B_{p,Rd} =$ 466,87 [kN] Resistenza del bullone al passaggio della testa [Tabella 3.4]

F_{t,fc,Rd} – resistenza dell'ala della colonna alla flessione
F_{t,wc,Rd} – resistenza dell'anima della colonna alla trazione

F_{t,ep,Rd} – resistenza della lamiera alla flessione F_{t,wb,Rd} – resistenza dell'anima alla trazione

 $\begin{aligned} F_{t,fc,Rd} &= Min \left(F_{T,1,fc,Rd} , F_{T,2,fc,Rd} , F_{T,3,fc,Rd} \right) & [6.2.6.4] , [Tab.6.2] \\ F_{t,wc,Rd} &= w \ b_{eff,t,wc} \ t_{wc} \ f_{yc} \ / \ g_{M0} & [6.2.6.3.(1)] \\ F_{t,ep,Rd} &= Min \left(F_{T,1,ep,Rd} , F_{T,2,ep,Rd} , F_{T,3,ep,Rd} \right) & [6.2.6.5] , [Tab.6.2] \\ F_{t,wb,Rd} &= b_{eff,t,wb} \ t_{wb} \ f_{yb} \ / \ g_{M0} & [6.2.6.8.(1)] \end{aligned}$

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2} {}^{2}F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)}$ - $\sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3}^{1} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(5+4)} - \sum_4 F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4}^{3} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{i=1}^{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	hj	$F_{tj,Rd}$	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	431,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA TRAZIONE N_{i,Rd}

 $N_{j,Rd} = \sum F_{tj,Rd}$

N_{i,Rd} = 1785,49 [kN] Resistenza del giunto alla trazione [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,34 < 1,00 verificato (0,34)

Resistenza del giunto alla flessione

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

F _{t1,Rd,comp} - Formula	Ft1,Rd,comp	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} = 1438,49$	1438,49	Ala della trave - compressione

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

Ft2,Rd,comp - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1} F_{tj,Rd} = 1438,49 - 431,24$	1007,25	Ala della trave - compressione
$F_{t,ep,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1438,49 - 705,78$	732,71	Ala della trave - compressione
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1438,49 - 892,74$	545,74	Ala della trave - compressione
$F_{t,ep,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 1438,49 - 1123,50$	314,99	Ala della trave - compressione
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4}^{1} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 6

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	84,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{5} F_{tj,Rd} = 1438,49 - 1354,25$	84,24	Ala della trave - compressione
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	h _j	$\mathbf{F}_{tj,Rd}$	$F_{t,fc,Rd}$	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	84,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA FLESSIONE M_{j,Rd}

$M_{i,Rd}$	= 2	h:	F+: pd
IVIJ,Ra	- /	111	i tj,Ra

$M_{j,Rd} =$	456,12	[kN*m]	Resistenza del giunto alla flessione	[6.2]	
$M_{b1,Ed}$ / M	$I_{j,Rd} \leq 1,0$		0,53 < 1,00	verificato	(0,53)
Verifica d	ell'interazior	ne M+N			

$M_{b1,Ed}$ / $M_{j,Rd}$ + $N_{b1,Ed}$ / $N_{j,Rd} \le 1$		[6.2	.5.1.(3)]
$M_{b1,Ed}$ / $M_{j,Rd}$ + $N_{b1,Ed}$ / $N_{j,Rd}$	0,86 < 1,00	verificato	(0,86)

Resistenza del giunto al taglio $V_{j,Rd}$

a _v =	0,60		Coefficiente per il calcolo di F _{v,Rd}	[Tabella 3.4]
b _{Lf} =	0,99		Coefficiente di riduzione per i giunti lunghi	[3.8]
$F_{v,Rd} =$	215,34	[kN]	Resistenza di un bullone al taglio	[Tabella 3.4]
$F_{t,Rd,max} =$	254,16	[kN]	Resistenza di un bullone alla trazione	[Tabella 3.4]
$F_{b,Rd,int} =$	320,18	[kN]	Resistenza di un bullone intermedio alla pressione	[Tabella 3.4]
$F_{b,Rd,ext} =$	412,80	[kN]	Resistenza di un bullone estremo alla pressione	[Tabella 3.4]

	Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F _{tj,Rd,M}	F _{tj,Ed,M}	F _{tj,Ed}	$F_{vj,Rd}$
--	----	----------------------	----------------------	----------------------	----------------------	--------------------	-------------

Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F _{tj,Rd,M}	F _{tj,Ed,M}	F _{tj,Ed}	F _{vj,Rd}
1	431,24	144,92	431,24	226,91	371,83	205,65
2	274,54	92,26	274,54	144,46	236,71	287,42
3	186,96	62,83	186,96	98,38	161,21	333,12
4	230,75	77,54	230,75	121,42	198,96	310,27
5	230,75	77,54	230,75	121,42	198,96	310,27
6	431,24	144,92	84,24	44,33	189,24	316,15

 $\begin{array}{ll} F_{tj,Rd,N} & - \mbox{Resistenza di una fila di bulloni alla trazione pura} \\ F_{tj,Ed,N} & - \mbox{Forza in una fila di bulloni dovuta all'azione assiale} \\ F_{tj,Rd,M} & - \mbox{Resistenza di una fila di bulloni alla flessione pura} \\ F_{tj,Ed,M} & - \mbox{Forza in una fila di bulloni dovuta al momento} \\ F_{tj,Ed} & - \mbox{Forza di trazione massima in una fila di bulloni} \\ F_{vj,Rd} & - \mbox{Resistenza ridotta della fila di bulloni} \\ \end{array}$

$$\begin{split} F_{tj,Ed,N} &= N_{j,Ed} \; F_{tj,Rd,N} \; \middle / \; N_{j,Rd} \\ F_{tj,Ed,M} &= M_{j,Ed} \; F_{tj,Rd,M} \; \middle / \; M_{j,Rd} \\ F_{tj,Ed} &= F_{tj,Ed,N} \; + \; F_{tj,Ed,M} \end{split}$$

 $F_{vj,Rd} = Min \; (n_h \; F_{v,Ed} \; (1 - F_{tj,Ed} / \; (1.4 \; n_h \; F_{t,Rd,max}), \; n_h \; F_{v,Rd} \; , \; n_h \; F_{b,Rd}))$

			The state of the s	
$V_{j,Rd} = n_h \sum_{1}$	ⁿ F _{vj,Rd}		[Ta	bella 3.4]
$V_{j,Rd} =$	1762,88	[kN]	Resistenza del giunto al taglio $V_{j,Rd}$	[Tabella 3.4]
$V_{b1,Ed} / V_{j,Rd}$	≤ 1,0		0,05 < 1,00	verificato (0,05)
Resistenza	delle sald	ature		
A _w =	165,70	[cm ²]	Area di tutte le saldature	[4.5.3.2(2)]
A _{wy} =	72,18	[cm ²]	Area delle saldature orizzontali	[4.5.3.2(2)]
A _{wz} =	93,52	[cm ²]	Area delle saldature verticali	[4.5.3.2(2)]
lwy =	69261,51	L [cm ⁴]	Momento di inerzia del sistema di saldature rispetto	all'asse oriz. [4.5.3.2(5)]
: _{^max} =t _{^max} :	= 94,21	[MPa]	Sollecitazione normale nella saldatura	[4.5.3.2(6)]
s^=t^ =	82,89	[MPa]	Sollecitazione nella saldatura verticale	[4.5.3.2(5)]
tıı =	9,62	[MPa]	Sollecitazione tangenziale	[4.5.3.2(5)]
b _w =	0,85		Coefficiente di correlazione	[4.5.3.2(7)]
Ö[s _{^max} ² + 3	*(t _{^max} ²)] <	$\leq f_u/(b_w*g_{M2})$	188,42 < 404,71	verificato (0,47)
Ö[s^2 + 3*($t^2 + t_{ }^2)] \le f$	u/(b _w *g _{M2})	166,62 < 404,71	verificato (0,41)

verificato

(0,30)

Rigidezza del giunto

 $s_{^{\wedge}} \leq 0.9^* f_u/g_{M2}$

L'azione assiale nella trave sorpassa il 5% di resistenza $N_{\text{pl,Rd}}$. Conforme al punto 6.3.1.(4) la rigidezza del giunto non può essere calcolata.

94,21 < 309,60

Il componente più debole:

ALA E ANIMA DELLA TRAVE IN COMPRESSIONE

Giunto conforme alla norma	Coefficiente	0,86

CASO 2

Autodesk Robot Structural Analysis Professional 2018 Coefficiente Calcolo del giunto incastrato Trave - Trave EN 1993-1-8:2005/AC:2009 0,86 Generale N. giunto: 5 Trave - trave Nome del giunto Geometria Lato sinistro Trave Profilato: **IPE 550** -180,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave b_{fbl} = 210 [mm] Larghezza della sezione della trave t_{wbl} = 11 [mm] Spessore dell'anima della sezione della trave t_{fbl} = 17 [mm] Spessore dell'ala della sezione della trave r_{bl} = 24 [mm] Raggio di raccordo della sezione della trave A_{bl} = 134,00 [cm²] Area della sezione della trave I_{vbl} = 67120,00 [cm4] Momento di inerzia della sezione della trave Materiale: S 275 275,00 [MPa] Resistenza f_{vh} = Lato destro Trave Profilato: IPE 550 0,0 [Deg] Angolo d'inclinazione 550 [mm] Altezza della sezione della trave h_{br} = 210 [mm] Larghezza della sezione della trave $b_{fbr} =$ 11 [mm] Spessore dell'anima della sezione della trave twhr = 17 [mm] Spessore dell'ala della sezione della trave tfbr = [mm] Raggio di raccordo della sezione della trave $r_{br} =$ 134,00 [cm²] Area della sezione della trave $A_{hr} =$ 67120,00 [cm⁴] Momento di inerzia della sezione della trave I_{vbr} = Materiale: S 275 275,00 [MPa] Resistenza $f_{vb} =$ Bulloni Il piano di taglio attraversa la parte NON FILETTATA del bullone. d = 24 [mm] Diametro del bullone Classe = 10.9 Classe del bullone 254,16 [kN] Resistenza del bullone alla trazione $F_{tRd} =$ 2 Numero di colonne dei bulloni n_h = 6 Numero di file di bulloni n_v = 85 [mm] Distanza del primo bullone dal bordo superiore della lamiera estrema h₁ = Distanza orizzontale e_i = 110 [mm] Distanza verticale p_i = 80;80;80;80;80 [mm] Lamiera 570 [mm] Altezza della lamiera h_{pr} = Larghezza della lamiera b_{pr} = 210 [mm] Spessore della lamiera t_{pr} = 20 [mm] Materiale: 275,00 [MPa] Resistenza $f_{vpr} =$ Saldature in angolo esterno 10 Saldatura dell'anima a_w = [mm] 10 Saldatura dell'ala a_f = [mm] Coefficienti di materiale 1.00 Coefficiente di sicurezza parziale [2.2] $g_{M0} =$ g_{M1} = 1.00 Coefficiente di sicurezza parziale [2.2] 1,25 Coefficiente di sicurezza parziale [2.2] $g_{M2} =$ g_{M3} = 1,25 Coefficiente di sicurezza parziale [2.2]

Stato limite ultimo (SLU)

Carichi

Condizione Calcolo manuale.

 $\begin{array}{lll} M_{b1,Ed} = & 240,00 & [kN^*m] & \text{Momento flettente nella trave destra} \\ V_{b1,Ed} = & 90,00 & [kN] & \text{Azione di taglio nella trave destra} \\ N_{b1,Ed} = & 600,00 & [kN] & \text{Azione assiale nella trave destra} \\ \end{array}$

Risultati

Resistenze della trave

TRAZIONE

 $A_b = 134,00$ [cm²] Area di sezione EN1993-1-1:[6.2.3]

 $N_{tb,Rd} = A_b f_{yb} / g_{M0}$

N_{tb,Rd} = 3685,00 [kN] Resistenza di calcolo della sezione alla trazione EN1993-1-1:[6.2.3]

TAGLIO

 $A_{vb} = 71.93$ [cm²] Area al taglio EN1993-1-1:[6.2.6.(3)]

 $V_{cb,Rd} = A_{vb} (f_{yb} / \ddot{O}3) / g_{M0}$

 $V_{\text{cb,Rd}} = 1141,97 \quad \text{[kN]} \qquad \text{Resistenza di calcolo della sezione al taglio} \qquad \text{EN1993-1-1:[6.2.6.(2)]} \\ V_{\text{b1,Ed}} / V_{\text{cb,Rd}} \leq 1,0 \qquad 0,08 < 1,00 \qquad \text{verificato} \qquad (0,08) \\ \end{cases}$

FLESSIONE - MOMENTO PLASTICO (SENZA RINFORZI)

 $W_{plb} = 2787,01$ [cm³] Fattore plastico della sezione EN1993-1-1:[6.2.5.(2)]

 $M_{b,pl,Rd} = W_{plb} f_{yb} / g_{M0}$

M_{b,pl,Rd} = 766,43 [kN*m] Resistenza plastica della sezione alla flessione (senza rinforzi) EN1993-1-1:[6.2.5.(2)]

FLESSIONE AL CONTATTO DELLA PIASTRA O DELL'ELEMENTO GIUNTO

 $W_{pl} = \qquad 2787,01 \qquad \text{[cm3]} \qquad \qquad \text{Fattore plastico della sezione} \qquad \qquad \text{EN1993-1-1:[6.2.5]}$

 $M_{cb,Rd} = W_{pl} f_{yb} / g_{M0}$

M_{cb,Rd} = 766,43 [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5]

ALA ED ANIMA ALLA COMPRESSIONE

 $M_{cb,Rd} = 766,43$ [kN*m] Resistenza di calcolo della sezione alla flessione EN1993-1-1:[6.2.5] $h_f = 533$ [mm] Distanza tra i centri di gravità delle ali [6.2.6.7.(1)]

 $F_{c,fb,Rd} = M_{cb,Rd} / h_f$

F_{c,fb,Rd} = 1438,49 [kN] Resistenza dell'ala compressa e dell'anima [6.2.6.7.(1)]

Parametri geometrici del giunto

LUNGHEZZE EFFICACI E PARAMETRI - PIASTRA D'ESTREMITA

Nr	m	m _x	е	e _x	р	l _{eff,cp}	l _{eff,nc}	l _{eff,1}	l _{eff,2}	l _{eff,cp,g}	l _{eff,nc,g}	l _{eff,1,g}	l _{eff,2,g}
1	38	-	50	-	80	240	232	232	232	200	165	165	165
2	38	-	50	-	80	240	215	215	215	160	80	80	80
3	38	-	50	-	80	240	215	215	215	160	80	80	80
4	38	-	50	-	80	240	215	215	215	160	80	80	80
5	38	-	50	-	80	240	215	215	215	160	80	80	80
6	38	-	50	-	80	240	232	232	232	200	165	165	165

m – Distanza del bullone dall'anima

m_x – Distanza del bullone dall'ala della trave

e – Distanza del bullone dal bordo esteriore

e_x – Distanza del bullone dal bordo esteriore orizzontale

p – Distanza dei bulloni

 $I_{\mathrm{eff,cp}}$ — Lunghezza efficace per un bullone nei meccanismi circolari

 $I_{\text{eff,nc}} \quad - \text{Lunghezza efficace per un bullone nei meccanismi non circolari}$

 $l_{eff,1}$ — Lunghezza efficace per un bullone per il modo 1 $l_{eff,2}$ — Lunghezza efficace per un bullone per il modo 2

l_{eff,cp,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi circolari l_{eff,nc,g} — Lunghezza efficace per un gruppo di bulloni nei meccanismi non circolari

 $l_{\text{eff,1,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 1 $l_{\text{eff,2,g}}$ — Lunghezza efficace per un gruppo di bulloni per il modo 2

Resistenza del giunto alla trazione

F_{t,Rd} = 254,16 [kN] Resistenza del bullone alla trazione [Tabella 3.4] B_{p,Rd} = 466,87 [kN] Resistenza del bullone al passaggio della testa [Tabella 3.4]

F_{t,fc,Rd} – resistenza dell'ala della colonna alla flessione
F_{t,wc,Rd} – resistenza dell'anima della colonna alla trazione

F_{t,ep,Rd} – resistenza della lamiera alla flessione F_{t,wb,Rd} – resistenza dell'anima alla trazione

 $\begin{aligned} F_{t,fc,Rd} &= Min \left(F_{T,1,fc,Rd} , F_{T,2,fc,Rd} , F_{T,3,fc,Rd} \right) & [6.2.6.4] , [Tab.6.2] \\ F_{t,wc,Rd} &= w \ b_{eff,t,wc} \ t_{wc} \ f_{yc} \ / \ g_{M0} & [6.2.6.3.(1)] \\ F_{t,ep,Rd} &= Min \left(F_{T,1,ep,Rd} , F_{T,2,ep,Rd} , F_{T,3,ep,Rd} \right) & [6.2.6.5] , [Tab.6.2] \\ F_{t,wb,Rd} &= b_{eff,t,wb} \ t_{wb} \ f_{yb} \ / \ g_{M0} & [6.2.6.8.(1)] \end{aligned}$

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa

F _{t2,Rd,comp} - Formula	F _{t2,Rd,comp}	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd}$ = 705,78 - 431,24	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)}$ - $\sum_{1}^{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
F _{t,wb,Rd(3)} = 656,43	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 4

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)} - \sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)}$ - $\sum_{3}^{1} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd}(4+3+2+1) - \sum_{3} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 5

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_4 F_{tj,Rd} = 692,25 - 417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)} - \sum_{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	hj	$F_{tj,Rd}$	F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	431,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA TRAZIONE N_{i,Rd}

 $N_{j,Rd} = \sum F_{tj,Rd}$

N_{i,Rd} = 1785,49 [kN] Resistenza del giunto alla trazione [6.2]

 $N_{b1,Ed} / N_{j,Rd} \le 1,0$ 0,34 < 1,00 verificato (0,34)

Resistenza del giunto alla flessione

RESISTENZA DELLA FILA DI BULLONI NUMERO 1

F _{t1,Rd,comp} - Formula	F _{t1,Rd,comp}	Componente
$F_{t1,Rd} = Min (F_{t1,Rd,comp})$	431,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(1)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(1)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} = 1438,49$	1438,49	Ala della trave - compressione

RESISTENZA DELLA FILA DI BULLONI NUMERO 2

F _{t2,Rd,comp} - Formula	Ft2,Rd,comp	Componente
$F_{t2,Rd} = Min (F_{t2,Rd,comp})$	274,54	Resistenza della fila di bulloni
$F_{t,ep,Rd(2)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(2)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1} F_{tj,Rd} = 1438,49 - 431,24$	1007,25	Ala della trave - compressione
$F_{t,ep,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 705,78 - 431,24$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(2+1)} - \sum_{1} F_{tj,Rd} = 746,91 - 431,24$	315,67	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 3

F _{t3,Rd,comp} - Formula	F _{t3,Rd,comp}	Componente
$F_{t3,Rd} = Min (F_{t3,Rd,comp})$	186,96	Resistenza della fila di bulloni
$F_{t,ep,Rd(3)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(3)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{2} F_{tj,Rd} = 1438,49 - 705,78$	732,71	Ala della trave - compressione
$F_{t,ep,Rd(3+2)} - \sum_{2} F_{tj,Rd} = 461,50 - 274,54$	186,96	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2)} - \sum_{2}^{2} F_{tj,Rd} = 488,40 - 274,54$	213,86	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 936,53 - 705,78$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(3+2+1)} - \sum_{2} F_{tj,Rd} = 991,11 - 705,78$	285,33	Anima della trave - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t4,Rd} = Min (F_{t4,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(4)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(4)} = 656,43$	656,43	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{3} F_{tj,Rd} = 1438,49 - 892,74$	545,74	Ala della trave - compressione
$F_{t,ep,Rd(4+3)} - \sum_{3} F_{tj,Rd} = 461,50 - 186,96$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3)}$ - $\sum_{3}^{3} F_{tj,Rd} = 488,40 - 186,96$	301,44	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 692,25 - 461,50$	230,75	Piastra d'estremità - trazione - gruppo

F _{t4,Rd,comp} - Formula	F _{t4,Rd,comp}	Componente
$F_{t,wb,Rd(4+3+2)} - \sum_{3}^{2} F_{tj,Rd} = 732,60 - 461,50$	271,10	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1167,28 - 892,74$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(4+3+2+1)} - \sum_{3} F_{tj,Rd} = 1235,31 - 892,74$	342,57	Anima della trave - trazione - gruppo

F _{t5,Rd,comp} - Formula	F _{t5,Rd,comp}	Componente
$F_{t5,Rd} = Min (F_{t5,Rd,comp})$	230,75	Resistenza della fila di bulloni
$F_{t,ep,Rd(5)} = 420,24$	420,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(5)} = 656,43$	656,43	Anima della trave - trazione
B _{p,Rd} = 933,73	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{4} F_{tj,Rd} = 1438,49 - 1123,50$	314,99	Ala della trave - compressione
$F_{t,ep,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 461,50 - 230,75$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4)} - \sum_{4}^{4} F_{tj,Rd} = 488,40 - 230,75$	257,65	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3)} - \sum_4 {}^3F_{tj,Rd} = 692,25-417,72$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3)} - \sum_{4} F_{tj,Rd} = 732,60 - 417,72$	314,88	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 923,01 - 692,25$	230,75	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2)} - \sum_{4}^{2} F_{tj,Rd} = 976,80 - 692,25$	284,55	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1398,03 - 1123,50$	274,54	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(5+4+3+2+1)} - \sum_{4} F_{tj,Rd} = 1479,51 - 1123,50$	356,02	Anima della trave - trazione - gruppo

RESISTENZA DELLA FILA DI BULLONI NUMERO 6

F _{t6,Rd,comp} - Formula	F _{t6,Rd,comp}	Componente
$F_{t6,Rd} = Min (F_{t6,Rd,comp})$	84,24	Resistenza della fila di bulloni
$F_{t,ep,Rd(6)} = 431,24$	431,24	Piastra d'estremità - trazione
$F_{t,wb,Rd(6)} = 708,83$	708,83	Anima della trave - trazione
$B_{p,Rd} = 933,73$	933,73	Bulloni al passaggio della testa
$F_{c,fb,Rd} - \sum_{1}^{5} F_{tj,Rd} = 1438,49 - 1354,25$	84,24	Ala della trave - compressione
$F_{t,ep,Rd(6+5)} - \sum_{5}^{5} F_{tj,Rd} = 705,78 - 230,75$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5)}$ - $\sum_{5}^{5} F_{tj,Rd} = 746,91 - 230,75$	516,16	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 936,53 - 461,50$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4)} - \sum_{5}^{4} F_{tj,Rd} = 991,11 - 461,50$	529,61	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1167,28 - 648,47$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3)} - \sum_{5}^{3} F_{tj,Rd} = 1235,31 - 648,47$	586,85	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1398,03 - 923,01$	475,03	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2)} - \sum_{5}^{2} F_{tj,Rd} = 1479,51 - 923,01$	556,51	Anima della trave - trazione - gruppo
$F_{t,ep,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1873,06 - 1354,25$	518,82	Piastra d'estremità - trazione - gruppo
$F_{t,wb,Rd(6+5+4+3+2+1)} - \sum_{5}^{1} F_{tj,Rd} = 1982,23 - 1354,25$	627,98	Anima della trave - trazione - gruppo

TABELLA RICAPITOLATIVA DELLE FORZE

Nr	h _j	$\mathbf{F}_{tj,Rd}$	$F_{t,fc,Rd}$	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	$B_{p,Rd}$
1	466	431,24	-	-	431,24	708,83	508,32	933,73
2	386	274,54	-	-	420,24	656,43	508,32	933,73
3	306	186,96	-	-	420,24	656,43	508,32	933,73
4	226	230,75	-	-	420,24	656,43	508,32	933,73
5	146	230,75	-	-	420,24	656,43	508,32	933,73
6	66	84,24	-	-	431,24	708,83	508,32	933,73

RESISTENZA DEL GIUNTO ALLA FLESSIONE M_{j,Rd}

$M_{i,Rd}$	= 7	h:	Fa: na
IVIJ,Ra	- /	111	I tj,Ra

ivij,Rd – Z	Hj I tj,Rd				
$M_{j,Rd} =$	456,12	[kN*m]	Resistenza del giunto alla flessione	[6.2]	
$M_{b1,Ed} / N$	$M_{j,Rd} \leq 1,0$		0,53 < 1,00	verificato	(0,53)
Verifica o	dell'interazio	ne M+N			

$M_{b1,Ed} / M_{j,Rd} + N_{b1,Ed} / N_{j,Rd} \le 1$		[6.2	.5.1.(3)]
$M_{b1,Ed}$ / $M_{j,Rd}$ + $N_{b1,Ed}$ / $N_{j,Rd}$	0,86 < 1,00	verificato	(0,86)

Resistenza del giunto al taglio $V_{j,Rd}$

a _v =	0,60		Coefficiente per il calcolo di F _{v,Rd}	[Tabella 3.4]
$b_{Lf} =$	0,99		Coefficiente di riduzione per i giunti lunghi	[3.8]
$F_{v,Rd} =$	215,34	[kN]	Resistenza di un bullone al taglio	[Tabella 3.4]
$F_{t,Rd,max} =$	254,16	[kN]	Resistenza di un bullone alla trazione	[Tabella 3.4]
$F_{b,Rd,int} =$	320,18	[kN]	Resistenza di un bullone intermedio alla pressione	[Tabella 3.4]
$F_{b,Rd,ext} =$	412,80	[kN]	Resistenza di un bullone estremo alla pressione	[Tabella 3.4]

Nr	F _{tj,Rd,N}	F _{tj,Ed,N}	F _{tj,Rd,M}	$F_{tj,Ed,M}$	$F_{tj,Ed}$	$F_{vj,Rd}$

Nr	F _{tj,Rd,N}	$F_{tj,Ed,N}$	F _{tj,Rd,M}	F _{tj,Ed,M}	$\mathbf{F}_{tj,Ed}$	F _{vj,Rd}
1	431,24	144,92	431,24	226,91	371,83	205,65
2	274,54	92,26	274,54	144,46	236,71	287,42
3	186,96	62,83	186,96	98,38	161,21	333,12
4	230,75	77,54	230,75	121,42	198,96	310,27
5	230,75	77,54	230,75	121,42	198,96	310,27
6	431,24	144,92	84,24	44,33	189,24	316,15

 $\begin{array}{ll} F_{tj,Rd,N} & - \mbox{Resistenza di una fila di bulloni alla trazione pura} \\ F_{tj,Ed,N} & - \mbox{Forza in una fila di bulloni dovuta all'azione assiale} \\ F_{tj,Rd,M} & - \mbox{Resistenza di una fila di bulloni alla flessione pura} \\ F_{tj,Ed,M} & - \mbox{Forza in una fila di bulloni dovuta al momento} \\ F_{tj,Ed} & - \mbox{Forza di trazione massima in una fila di bulloni} \\ F_{vj,Rd} & - \mbox{Resistenza ridotta della fila di bulloni} \\ \end{array}$

$$\begin{split} F_{tj,Ed,N} &= N_{j,Ed} \; F_{tj,Rd,N} \; / \; N_{j,Rd} \\ F_{tj,Ed,M} &= M_{j,Ed} \; F_{tj,Rd,M} \; / \; M_{j,Rd} \\ F_{tj,Ed} &= F_{tj,Ed,N} \; + \; F_{tj,Ed,M} \end{split}$$

 $F_{vj,Rd} = Min (n_h F_{v,Ed} (1 - F_{tj,Ed} / (1.4 n_h F_{t,Rd,max}), n_h F_{v,Rd}, n_h F_{b,Rd}))$

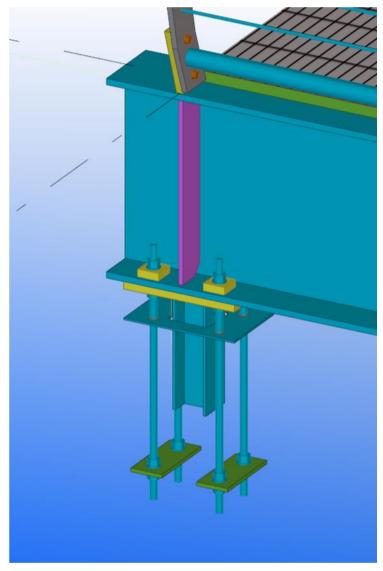
 $\begin{array}{lll} V_{j,Rd} = n_h \sum_i ^n F_{v_j,Rd} & & & & & & & & & & & & \\ V_{j,Rd} = & 1762,88 & & & & & & & & & & & & \\ \end{array}$

$V_{b1,Ed} / V_{j,Rd} \le 1,0$			0,05 < 1,00	verificato	(0,05)
Resistenza	a delle salc	lature			
$A_w =$	165,70	[cm ²]	Area di tutte le saldature	[4.5.3.2(2	2)]
$A_{wy} =$	72,18	[cm ²]	Area delle saldature orizzontali	[4.5.3.2(2	2)]
$A_{wz} =$	93,52	[cm ²]	Area delle saldature verticali	[4.5.3.2(2	2)]
I _{wy} =	69261,5	1 [cm ⁴]	Momento di inerzia del sistema di saldature rispetto all'asse	e oriz. [4.5.3.2(5	5)]
s _{^max} =t _{^max}	= 94,21	[MPa]	Sollecitazione normale nella saldatura	[4.5.3.2(6	5)]
s^=t^ =	82,89	[MPa]	Sollecitazione nella saldatura verticale	[4.5.3.2(5	5)]
t _{II} =	9,62	[MPa]	Sollecitazione tangenziale	[4.5.3.2(5)]	
b _w =	0,85		Coefficiente di correlazione	[4.5.3.2(7	7)]
$\ddot{O}[s_{max}^2 + $	3*(t _{max} ²)]	$\leq f_u/(b_w*g_{M2})$	188,42 < 404,71	verificato	(0,47)
Ö[s^2 + 3*	$(t^2+t_{II}^2)] \leq$	$f_u/(b_w*g_{M2})$	166,62 < 404,71	verificato	(0,41)
$s_{^{\wedge}} \leq 0.9 * f_{u_i}$	/g _{M2}		94,21 < 309,60	verificato	(0,30)

Rigidezza del giunto

L'azione assiale nella trave sorpassa il 5% di resistenza $N_{\text{pl,Rd}}$. Conforme al punto 6.3.1.(4) la rigidezza del giunto non può essere calcolata.

Il componente più debole:


ALA E ANIMA DELLA TRAVE IN COMPRESSIONE

Giunto conforme alla norma Coefficiente 0,86

7.2.3. Verifica appoggi impalcato vincolati a traslazioni orizzontali lato cls

Gli appoggi scorrevoli unidirezionali e l'appoggio fisso in testata, sono dotati di 4 barre M20 8.8 annegate nel getto e una chiave di tagli HEA100 che si innesta nel calcestruzzo di 250mm.

Autodesk Robot Structural Analysis Professional 2018

Calcolo del plinto incernierato

Eurocode 3: EN 1993-1-8:2005/AC:2009 + CEB Design Guide: Design of fastenings in concrete

Coefficiente
0,80

Generale

N. giunto: 13

Nome del giunto Plinto incernierato

Geometria Colonna

Profilato: HEA 220

L_c = 5,00 [m] Lunghezza della colonna a = 0,0 [Deg] Angolo d'inclinazione

 h_c = 210 [mm] Altezza della sezione della colonna b_{fc} = 220 [mm] Larghezza della sezione della colonna

 $\begin{array}{lll} t_{wc} = & 7 & [mm] & Spessore \ dell'anima \ della \ sezione \ della \ colonna \\ t_{fc} = & 11 & [mm] & Spessore \ dell'ala \ della \ sezione \ della \ colonna \end{array}$

L _c =	5,00	[m]	Lunghezza della colonna
r _c =	5,00 18	[mm]	Raggio di raccordo della sezione della colonna
A _c =	64,30	[rm ²]	Area della sezione della colonna
I _{vc} =	5410,00		Momento di inerzia della sezione della colonna
Materiale		275	
f _{yc} =	275,00	[MPa]	Resistenza
f _{uc} =	430,00	[MPa]	Limite di resistenza del materiale
Plinto del	la colonna		
I _{pd} =	300	[mm]	Lunghezza
b _{pd} =	230	[mm]	Larghezza
t _{pd} =	17	[mm]	Spessore
Materiale	:	S 275	
$f_{ypd} =$	275,00	[M	Pa] Resistenza
$f_{\text{upd}} =$	430,00	[M	Pa] Limite di resistenza del materiale
Ancoragg	io		
Il piano di	taglio attr	aversa la part	e NON FILETTATA del bullone.
Classe =	8.8		Classe di ancoraggi
$f_{yb} =$	640,00	[MPa]	Limite di plasticità del materiale del bullone
f _{ub} =	800,00	[MPa]	Resistenza del materiale del bullone alla trazione
d =	20	[mm]	Diametro del bullone
A _s =	2,45	[cm ²]	Area della sezione efficace del bullone
A _v =	3,14	[cm ²]	Area della sezione del bullone
n _V =	2		Numero di colonne dei bulloni
n _H =	2	[mm]	Numero di file di bulloni
ен =	190	[mm]	Distanza orizzontale
e _V =	150	[mm]	Distanza verticale
	ni di ancor		
L ₁ =	100	[mm]	
L ₂ =	500	[mm]	
Rondella	90	[mm]	Lunghazza
$I_{wd} = b_{wd} =$	80 60	[mm] [mm]	Lunghezza Larghezza
t _{wd} =	20	[mm]	Spessore
Cuneo	20	[]	Spessore
Profilato:			HEA 100
l _w =	250	[mm]	Lunghezza
Materiale	: S2	275	
$f_{yw} =$	275,00	[MPa]	Resistenza
Coefficier	nti di mater	riale	
g _{M0} =	1,00		Coefficiente di sicurezza parziale
g _{M2} =	1,25		Coefficiente di sicurezza parziale
g _C =	1,50		Coefficiente di sicurezza parziale
Plinto di f	ondazione		
L =	600	[mm]	Lunghezza del plinto
B =	900	[mm]	Larghezza del plinto
H =	2000	[mm]	Altezza del plinto
Calcestru			
Classe		C28/35	
f _{ck} =	35,00	[MPa	a] Resistenza caratteristica alla compressione
Getto di s	_		
t _g =	30	[mm]	Spessore del getto di sigillatura
f _{ck,g} =	12,00	[MPa]	Resistenza caratteristica alla compressione
C _{f,d} =	0,30		Coeff. di attrito tra la piastra di base e il calcestruzzo
Saldature			
a _p =	10	[mm]	Piastra principale del plinto della colonna
a _w =	4	[mm]	Cuneo
Carichi			
Condizion	ie		Calcolo manuale.
$N_{j,Ed} =$	60,00	[kN]	Azione assiale
INJ,Ed —	/		
$V_{j,Ed,y} =$	330,00	[kN]	Azione tagliante
		[kN] [kN]	Azione tagliante Azione tagliante

Zona in tra	azione			
		NE D'ANCORAG	GGIO	
A _b =	2,45	[cm ²]	Area efficace del bullone	[Tabella 3.4]
f _{ub} =	800,00	[MPa]	Resistenza del materiale del bullone alla trazione	[Tabella 3.4]
Beta =	0,85	[۵]	Coefficiente di riduzione della resistenza del bullone	[3.6.1.(3)]
	eta*0.9*f _{ub} * <i>A</i>	Δ ₆ /σ _{M2}	Coefficiente di Madzione della resistenza dei sanone	[5.0.1.(5)]
F _{t,Rd,s1} =	119,95	[kN]	Resistenza del bullone alla rottura	[Tabella 3.4]
		[KIV]		
g _{Ms} =	1,20	[NADa]	Coefficiente di sicurezza parziale	CEB [3.2.3.2]
f _{yb} =	640,00	[MPa]	Limite di plasticità del materiale del bullone	CEB [9.2.2]
$F_{t,Rd,s2} = f_{yb}$		[LAL]	Posistanza dal bullana alla rattura	CED [0 2 2]
$F_{t,Rd,s2} =$	130,67	[kN]	Resistenza del bullone alla rottura	CEB [9.2.2]
	n(F _{t,Rd,s1} ,F _{t,Rd,s}	•		
$F_{t,Rd,s} =$	119,95	[kN]	Resistenza del bullone alla rottura	
STRAPPO	DEL BULLON	IE DI ANCORAG	GGIO DAL CALCESTRUZZO	
$f_{ck} =$	35,00	[MPa]	Resistenza caratteristica del calcestruzzo alla compressione	EN 1992-1:[3.1.2]
$f_{ctd} = 0.7*0$	$0.3*f_{ck}^{2/3}/g_{c}$			
$f_{ctd} = 1$,	50 [MPa]		a di calcolo alla trazione	EN 1992-1:[8.4.2.(2)]
$h_1 = 1,$	00	Coeff. dipe	endente dalle condizioni del getto di calcestruzzo e dell'ader	enza EN 1992-1:[8.4.2.(2)]
-	00	Coeff. dipe	endente dal diametro barra	EN 1992-1:[8.4.2.(2)]
$f_{bd} = 2.25^*$	h ₁ *h ₂ *f _{ctd}			
$f_{bd} =$	3,37	[MPa]	Aderenza di calcolo ammissibile	EN 1992-1:[8.4.2.(2)]
$h_{ef} =$	500	[mm]	Lunghezza efficace del bullone di ancoraggio	EN 1992-1:[8.4.2.(2)]
$F_{t,Rd,p} = p^*$	$d*h_{ef}*f_{bd}$			
$F_{t,Rd,p} =$	105,89	[kN]	Resistenza di calc. per il sollevamento	EN 1992-1:[8.4.2.(2)]
STRAPPO	DEL CONO	EL CALCESTRU	ZZO	
h _{ef} =	250	[mm]	Lunghezza efficace del bullone di ancoraggio	CEB [9.2.4]
$N_{Rk,c}^{0} = 7.5$	5[N ^{0.5} /mm ^{0.5}]	*f _{ck} *h _{ef} ^{1.5}		
$N_{Rk,c}^{0} =$	175,39	[kN]	Resistenza caratteristica del bullone d'ancoraggio	CEB [9.2.4]
S _{cr,N} =	750	[mm]	Larghezza critica del cono del calcestruzzo	CEB [9.2.4]
C _{cr,N} =	375	[mm]	Distanza critica dal bordo della fondazione	CEB [9.2.4]
A _{c,N0} =	8460,00	[cm²]	Area massima del cono	CEB [9.2.4]
A _{c,N} =	5400,00	[cm²]	Area reale del cono	CEB [9.2.4]
$y_{A,N} = A_{c,N}$. ,		
-	,64	Coeff. dip	endente dall'interasse dell'ancoraggio e dalla distanza dal bo	ordo CEB [9.2.4]
-	05 [mm]		minima dell'ancoraggio dal bordo	CEB [9.2.4]
$y_{s,N} = 0.7 +$	- 0.3*c/c _{cr.N} ≤	£ 1.0		
	86		endente dalla distanza dell'ancoraggio dal bordo della fondaz	ione CEB [9.2.4]
y _{ec,N} = 1,			endente dalla ripartizione delle forze di trazione negli ancora	
	+ h _{ef} [mm]/20	-		
y _{re,N} =	1,00		Coeff. dipendente dalla densità dell'armatura della fondazion	e CEB [9.2.4]
y _{ucr,N} =	1,00		Coeff. dipendente dal grado di fessurazione del calcestruzzo	CEB [9.2.4]
g _{Mc} =	2,16		Coefficiente di sicurezza parziale	CEB [3.2.3.1]
		Yec,N*Yre,N*Yucr,N/	•	
	1,78 [kN]		a di calcolo dell'ancoraggio allo strappo del cono del calcestr	uzzo EN 1992-1:[8.4.2.(2)]
	EL CALCEST		50	- [
h _{ef} =	500	[mm]	Lunghezza efficace del bullone di ancoraggio	CEB [9.2.5]
	5[N ^{0.5} /mm ^{0.5}]		Langitezza emedec dei ballone di diteoraggio	CLD [5.2.5]
$N_{Rk,c}^{0} = 7.5$	496,08	[kN]	Resistenza di calc. per il sollevamento	CEB [9.2.5]
	1000	[mm]	Larghezza critica del cono del calcestruzzo	CEB [9.2.5]
$S_{cr,N} = C_{cr,N} =$	500	[mm]	Distanza critica dal bordo della fondazione	CEB [9.2.5]
			Area massima del cono	
A _{c,N0} =	13685,00	[cm ²]		CEB [9.2.5]
$A_{c,N} =$	5400,00	[cm ²]	Area reale del cono	CEB [9.2.5]
$y_{A,N} = A_{c,N}/$		Cooff 4:~	endente dall'interasse dell'ancoraggio e dalla distanza dal bo	ordo CER [0 2 5]
	,39 NE [mm]	· ·		
	05 [mm]		minima dell'ancoraggio dal bordo	CEB [9.2.5]
-	- 0.3*c/c _{cr.N} ≤ ๑ว		indonto dalla distanza dall'ancorossio del hende delle frederica	iono CER [O 2 F]
-	82 00	-	endente dalla distanza dell'ancoraggio dal bordo della fondaz	
$y_{ec,N} = 1$,		-	endente dalla ripartizione delle forze di trazione negli ancora	ggi CEB [9.2.5]
	+ h _{ef} [mm]/20		Coeff dipondente dalla densità dell'averatione dalla facilità	o CED [0 2 F]
$y_{re,N} =$	1,00	(Coeff. dipendente dalla densità dell'armatura della fondazion	e CEB [9.2.5]

Coeff. dipendente dal grado di fessurazione del calcestruzzo CEB [9.2.5]

y_{ucr,N} = 1,00

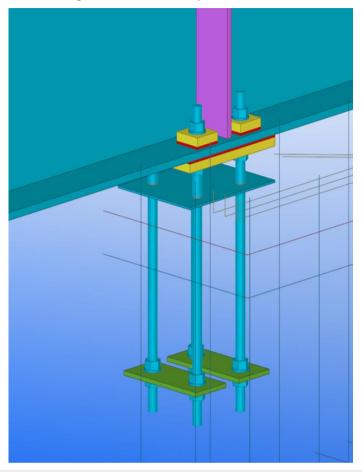
 $y_{h,N} = (h/(2*h_{ef}))^{2/3} \le 1.2$

y _{h,N} =	1,20		Coeff. dipendente dall'altezza della fondazione	CEB [9.2.5]
g _{M,sp} =	2,16		Coefficiente di sicurezza parziale	CEB [3.2.3.1]
	-	.N *V ec,N *V re,N *V	/ucr,N*Yh,N/gM,sp	
F _{t,Rd,sp} =	89,50	[kN]	Resistenza di calcolo dell'ancoraggio allo spacco del calcestru	uzzo CEB [9.2.5]
RESISTEN	ZA DELL'AN	NCORAGGIO A	ALLA TRAZIONE	
F _{t,Rd} = min	n(F _{t,Rd,s} , F _{t,Rd}	I,p , F _{t,Rd,c} , F _{t,Rd}	.sp)	
$F_{t,Rd} =$	44,78	[kN]	Resistenza dell'ancoraggio alla trazione	
FLESSION	IE DELLA PI	ASTRA DI BAS	SE .	
l _{eff,1} =	284	[mm]	Lunghezza efficace per un bullone per il modo 1	[6.2.6.5]
I _{eff,2} =	284	[mm]	Lunghezza efficace per un bullone per il modo 2	[6.2.6.5]
m =	60	[mm]	Distanza del bullone dal bordo di irrigidimento	[6.2.6.5]
$M_{pl,1,Rd} =$	5,65	[kN*m]	Resistenza plastica della piastra per il modo 1	[6.2.4]
$M_{pl,2,Rd} =$	5,65	[kN*m]	Resistenza plastica della piastra per il modo 2	[6.2.4]
$F_{T,1,Rd} =$	375,67	[kN]	Resistenza della piastra per il modo 1	[6.2.4]
$F_{T,2,Rd} =$	148,60	[kN]	Resistenza della piastra per il modo 2	[6.2.4]
$F_{T,3,Rd} =$	89,56	[kN]	Resistenza della piastra per il modo 3	[6.2.4]
$F_{t,pl,Rd} = m$		_{r,2,Rd} , F _{r,3,Rd})		
$F_{t,pl,Rd} =$	89,56	[kN]	Resistenza della piastra in trazione	[6.2.4]
RESISTEN	ZA DELL'AI	NIMA DELLA (COLONNA ALLA TRAZIONE	
t _{wc} =	7	[mm]	Spessore efficace dell'anima della colonna	[6.2.6.3.(8)]
$b_{eff,t,wc} =$	284	[mm]	Larghezza efficace dell'anima in trazione	[6.2.6.3.(2)]
$A_{vc} =$	20,63	[cm ²]	Area al taglio	EN1993-1-1:[6.2.6.(3)]
w =	0,67		Coefficiente di riduzione per l'interazione con il taglio	[6.2.6.3.(4)]
_	/ b _{eff,t,wc} t _{wc}		Decision of different della selecció	[6.2.6.2.44]]
F _{t,wc,Rd} =	368,27	[kN]	Resistenza dell'anima della colonna	[6.2.6.3.(1)]
			ONA IN TRAZIONE	(0.00)
$N_{j,Rd} =$	179,12	[kN]	Resistenza del plinto alla trazione assiale	[6.2.8.3]
Controllo	della resist	enza del giun		
$N_{j,Ed} / N_{j,Rd}$	d ≤ 1,0 (6.24	1)	0,33 < 1,00	verificato (0,33)
Taglio				
PRESSION	NE DEL BUL	LONE D'ANCO	DRAGGIO SULLA PIASTRA DI BASE	
Taglio del	lla forza V _{j,}	Ed,y		
$a_{d,y} =$	0,61	Co	eff. di posizione dei bulloni: nella direzione del taglio	[Tabella 3.4]
	0,61		eff. per il calcolo della resistenza F _{1,vb,Rd}	[Tabella 3.4]
	2,50		eff. di posizione dei bulloni: perpendicolari alla direzione del t	taglio [Tabella 3.4]
	$k_{1,y}*a_{b,y}*f_{up}$			
	177,21 [ki	-	istenza del bullone d'ancoraggio alla pressione sulla piastra di	i base [6.2.2.(7)]
•	lla forza V _{j,}	•		5-1 N 0 03
	0,83		eff. di posizione dei bulloni: nella direzione del taglio	[Tabella 3.4]
	0,83		eff. per il calcolo della resistenza F _{1,vb,Rd}	[Tabella 3.4]
	2,50 k _{1,z} *a _{b,z} *f _{up} *		eff. di posizione dei bulloni: perpendicolari alla direzione del t	tagiio [Tabella 3.4]
	k _{1,z} a _{b,z} r _{up} 243,67 [kl		istenza del bullone d'ancoraggio alla pressione sulla piastra di	i haso [6.2.2.(7\)
			'	T base [0.2.2.(7)]
		IE D'ANCORA	Coeff. per il calcolo della resistenza F _{2,vb,Rd}	[6.2.2.(7)]
$a_b = A_{vb} =$	0,25 3,14	[cm ²]	Area della sezione del bullone	[6.2.2.(7)]
$f_{ub} =$	800,00	[MPa]	Resistenza del materiale del bullone alla trazione	[6.2.2.(7)]
g _{M2} =	1,25	[.• u]	Coefficiente di sicurezza parziale	[6.2.2.(7)]
-	b*fub*Avb/gr	VI2	gooms.c.n.c ar stoar cara parame	[6:2:2:(//]
F _{2,vb,Rd} =			Desistante del bullone el tablico escre effetto della laura	[
a _M =	49,86	[KIN]	Resistenza dei bullone al taglio - senza effetto della leva	[6.2.2.(7)]
M _{Rk,s} =	49,86 2.00	[kN]	Resistenza del bullone al taglio - senza effetto della leva Coeff, dipendente dal fissaggio di un ancoraggio alla fondazi	[6.2.2.(7)] ione CEB [9.3.2.2]
IVIRK.S —	2,00		Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi	one CEB [9.3.2.2]
I _{sm} =		[kN*m] [mm]		
	2,00 0,67	[kN*m]	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione	one CEB [9.3.2.2] CEB [9.3.2.2]
$I_{sm} = g_{Ms} =$	2,00 0,67 49	[kN*m] [mm]	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva	one CEB [9.3.2.2] CEB [9.3.2.2] CEB [9.3.2.2]
$I_{sm} = g_{Ms} =$	2,00 0,67 49 1,20	[kN*m] [mm]	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva	one CEB [9.3.2.2] CEB [9.3.2.2] CEB [9.3.2.2]
$I_{sm} =$ $g_{Ms} =$ $F_{v,Rd,sm} = a$ $F_{v,Rd,sm} = a$	2,00 0,67 49 1,20 _{IM} *M _{Rk,s} /(I _{sm} 22,94	[kN*m] [mm] n*g _{Ms})	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva Coefficiente di sicurezza parziale Resistenza del bullone al taglio - con effetto della leva	CEB [9.3.2.2] CEB [9.3.2.2] CEB [9.3.2.2] CEB [3.2.3.2]
$I_{sm} =$ $g_{Ms} =$ $F_{v,Rd,sm} = a$ $F_{v,Rd,sm} = a$	2,00 0,67 49 1,20 _{IM} *M _{Rk,s} /(I _{sm} 22,94	[kN*m] [mm] n*g _{Ms}) [kN]	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva Coefficiente di sicurezza parziale Resistenza del bullone al taglio - con effetto della leva	CEB [9.3.2.2] CEB [9.3.2.2] CEB [9.3.2.2] CEB [3.2.3.2]
$I_{sm} =$ $g_{Ms} =$ $F_{v,Rd,sm} = a$ $F_{v,Rd,sm} =$ DISTRUZI	2,00 0,67 49 1,20 _{M*MRk,s} /(I _{sn} 22,94	[kN*m] [mm] ,*g _{Ms}) [kN] ONO DEL CAL	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva Coefficiente di sicurezza parziale Resistenza del bullone al taglio - con effetto della leva	CEB [9.3.2.2] CEB [9.3.2.2] CEB [3.2.2] CEB [3.2.3.2] CEB [9.3.1]
$I_{sm} = g_{Ms} = F_{v,Rd,sm} = a$ $F_{v,Rd,sm} = DISTRUZI$ $N_{Rk,c} =$	2,00 0,67 49 1,20 M*MRk,s/(Isn 22,94 ONE DEL C 0 96,73	[kN*m] [mm] ,*g _{Ms}) [kN] ONO DEL CAL	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva Coefficiente di sicurezza parziale Resistenza del bullone al taglio - con effetto della leva CESTRUZZO Resistenza di calc. per il sollevamento	CEB [9.3.2.2] CEB [9.3.2.2] CEB [9.3.2.2] CEB [3.2.3.2] CEB [9.3.1] CEB [9.2.4]
$\begin{split} I_{sm} &= \\ g_{Ms} &= \\ F_{v,Rd,sm} &= a \\ F_{v,Rd,sm} &= a \\ \textbf{DISTRUZI} \\ N_{Rk,c} &= \\ k_3 &= \\ g_{Mc} &= \\ \end{split}$	2,00 0,67 49 1,20 _{IM**MRk,s} /(I _{sm} 22,94 ONE DEL C 96,73 2,00	[kN*m] [mm] ,*g _{Ms}) [kN] ONO DEL CAL	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva Coefficiente di sicurezza parziale Resistenza del bullone al taglio - con effetto della leva CESTRUZZO Resistenza di calc. per il sollevamento Coeff. dipendente dalla lunghezza dell'ancoraggio	CEB [9.3.2.2] CEB [9.3.2.2] CEB [9.3.2.2] CEB [3.2.3.2] CEB [9.3.1] CEB [9.2.4] CEB [9.3.3]
$\begin{split} I_{sm} &= \\ g_{Ms} &= \\ F_{v,Rd,sm} &= a \\ F_{v,Rd,sm} &= a \\ \textbf{DISTRUZI} \\ N_{Rk,c} &= \\ k_3 &= \\ g_{Mc} &= \\ \end{split}$	2,00 0,67 49 1,20 _{IM} *M _{Rk,s} /(I _{sn} 22,94 ONE DEL C 96,73 2,00 2,16	[kN*m] [mm] ,*g _{Ms}) [kN] ONO DEL CAL	Coeff. dipendente dal fissaggio di un ancoraggio alla fondazi Resistenza caratteristica dell'ancoraggio alla flessione Lunghezza del braccio di leva Coefficiente di sicurezza parziale Resistenza del bullone al taglio - con effetto della leva CESTRUZZO Resistenza di calc. per il sollevamento Coeff. dipendente dalla lunghezza dell'ancoraggio	CEB [9.3.2.2] CEB [9.3.2.2] CEB [9.3.2.2] CEB [3.2.3.2] CEB [9.3.1] CEB [9.2.4] CEB [9.3.3]

DISTRUZIONE DEL BORDO DEL CALCESTRUZZO

DISTRUZI	ONE DEL BO	KDO DEL CALC	ESTRUZZU				
Taglio de	lla forza V _{j,Ed}	. Y					
$V_{Rk,c,y}{}^0=6$	94,61 [kN]	Resistenza	a caratteristica del bul	lone d'ancoraggio		CEB	[9.3.4.(a)]
$y_{A,V,y} = 0$,36	Coeff. dipe	endente dall'interasse	dell'ancoraggio e dalla distanza dal	bordo	CEB	[9.3.4]
$y_{h,V,y} = 1$,00	Coeff. dipe	endente dallo spessor	e della fondazione		CEB	[9.3.4.(c)]
$y_{s,V,y} = 0$,81	Coeff. di ir	nfluenza dei bordi par	alleli all'azione tagliante		CEB	[9.3.4.(d)]
$y_{ec,V,y} = 1$,00	Coeff. di ir	regolarità della ripart	izione dell'azione tagliante sui singo	li ancoraggi di ur	gruppo CEB	[9.3.4.(e)]
y _{a,V,y} = 1	,00	Coeff. dipe	endente dall'angolo d	ell'azione tagliante		CEB	[9.3.4.(f)]
$y_{ucr,V,y} = 1$,00	Coeff. dipe	endente dal tipo di ar	matura dei bordi utilizzata		CEB	[9.3.4.(g)]
g _{Mc} = 2	,16	Coefficien	te di sicurezza parzial	e		CEB	[3.2.3.1]
$F_{v,Rd,c,y} = V$	[/] Rk,c,y ⁰ * y A,V,y* y	h,v,y *y s,v,y *y ec,v,y	,*ya,v,y*yucr,v,y/gMc				
$F_{v,Rd,c,y} =$	94,85	[kN]	Resistenza del calc	estruzzo alla distruzione del bordo	CEB [9.3.1]		
Taglio de	lla forza V _{j,Ed}	,z					
$V_{Rk,c,z}^{-0} = 2$	80,75 [kN]	Resistenza	caratteristica del bul	lone d'ancoraggio		CEB	[9.3.4.(a)]
y _{A,V,z} = 1	,00	Coeff. dipe	endente dall'interasse	dell'ancoraggio e dalla distanza dal	bordo	CEB	[9.3.4]
y _{h,V,z} = 1	,00	Coeff. dipe	endente dallo spessor	e della fondazione		CEB	[9.3.4.(c)]
$y_{s,V,z} = 1$		· ·	•	alleli all'azione tagliante			[9.3.4.(d)]
y _{ec,v,z} = 1			•	izione dell'azione tagliante sui singo	li ancoraggi di ur		
y _{a,V,z} = 1			endente dall'angolo d				[9.3.4.(f)]
y _{ucr,V,z} = 1		Coeff. dipe	endente dal tipo di ari	matura dei bordi utilizzata		CEB	[9.3.4.(g)]
g _{Mc} = 2		· ·	te di sicurezza parzial				[3.2.3.1]
			* y a,v,z* y ucr,v,z / gmc				
F _{v,Rd,c,z} =	129,98	[kN]		estruzzo alla distruzione del bordo	CEB [9.3.1]		
SLITTAMI	ENTO DEL PL	INTO					
C _{f,d} =	0,30		Coeff. di attrito tra	la piastra di base e il calcestruzzo	[6.2.2.(6)]		
N _{c,Ed} =	0,00	[kN]	Azione di compress	•	[6.2.2.(6)]		
$F_{f,Rd} = C_{f,d}$. ,			(-/,		
F _{f,Rd} =	0,00	[kN]	Resistenza allo slitt	amento	[6.2.2.(6)]		
	-	VETTA CON CA			. ,,,		
	1.4*l _w *b _{wy} *f						
	784,00	[kN]	Resistenza al conta	tto della cavetta con calcestruzzo			
			Nesistenza di conta	tto della cavetta con calcesti azzo			
	1.4*l _w *b _{wz} *f ₀		Posistonza al conta	tto dolla cavotta con calcostruzzo			
	816,67	[kN]	Resistenza ai conta	tto della cavetta con calcestruzzo			
CONTROL	LLO DEL TAG	ЦО					
$V_{j,Rd,y} = n_b$, $F_{v,Rd,cp}$, $F_{v,Rd,c,y}$) + $F_{v,Rd,c}$				
$V_{j,Rd,y} =$	875,74	[kN]	Resistenza del giun		CEB [9.3.1]		
$V_{j,Ed,y}/V_{j,F}$				0,38 < 1,00	verificato	(0,38)	
$V_{j,Rd,z} = n_b$	*min(F _{1,vb,Rd,z}	, F _{2,vb,Rd} , F _{v,Rd,sm}	, $F_{v,Rd,cp}$, $F_{v,Rd,c,z}$) + $F_{v,Rd,c}$				
$V_{j,Rd,z} =$	908,41	[kN]	Resistenza del giun	- "	CEB [9.3.1]		
$V_{j,Ed,z} / V_{j,F}$	$R_{d,z} \leq 1,0$			0,42 < 1,00	verificato	(0,42)	
$V_{j,Ed,y} / V_{j,E}$	$_{Rd,y} + V_{j,Ed,z} / V$	$t_{j,Rd,z} \leq 1,0$		0,80 < 1,00	verificato	(0,80)	
Saldature	tra la colonr	na e la piastra d	della base				
s^ =	3,42	[MPa]	Sollecitazione norn	nale nella saldatura	[4.5.3.(7)]		
t^ =	3,42	[MPa]	Sollecitazione tang	enziale perpendicolare	[4.5.3.(7)]		
t _{yll} =	38,11	[MPa]	Sollecitazione tang	enziale parallela a V _{j,Ed,y}	[4.5.3.(7)]		
t _{zII} =	102,66	[MPa]	Sollecitazione tang	enziale parallela a V _{j,Ed,z}	[4.5.3.(7)]		
bw =	0,85		Coefficiente dovuto	o alla resistenza	[4.5.3.(7)]		
s^ / (0.9*1	$f_u/g_{M2})) \le 1.0$	(4.1)		0,01 < 1,00	verificato	(0,01)	
		' (f _u /(bw*g _{M2})))	≤ 1.0 (4.1)	0,16 < 1,00	verificato	(0,16)	
		' (f _u /(b _w *g _{M2})))		0,44 < 1,00	verificato	(0,44)	
	nente più del		, ,			,	
-	-		O - CON EFFETTO DEL	LA LEVA			
Note							

Distanza del bullone di ancoraggio dal rialzo della colonna troppo piccola.


Giunto conforme alla norma Coefficiente 0,80

7.2.4. Verifica appoggi impalcato svincolati a traslazioni orizzontali lato cls

Il nodo inquestione sopporta solo azioni verticali. Le forze di copressione si scaricano direttamente sul calcestruzzo attraverso uno stato di emaco mentre quelle di trazione vengono contenute da 4 barre M20 8.8 annegate nel getto.

La massima forza di sollevamento registrata nei calcoli è pari a 60 kN.

Autodesk Robot Structural Analysis Professional 2018

Calcolo del plinto incernierato

Eurocode 3: EN 1993-1-8:2005/AC:2009 + CEB Design Guide: Design of fastenings in concrete

Coefficiente **0,33**

Generale			
N. giunto:	:	10	
Nome del	giunto	Plinto incernie	erato
Geometri	a		
Colonna			
Profilato:			HEA 220
L _c =	5,00	[m]	Lunghezza della colonna
a =	0,0	[Deg]	Angolo d'inclinazione
h _c =	210	[mm]	Altezza della sezione della colonna
$b_{fc} =$	220	[mm]	Larghezza della sezione della colonna
$t_{wc} =$	7	[mm]	Spessore dell'anima della sezione della colonna
$t_{fc} =$	11	[mm]	Spessore dell'ala della sezione della colonna
r _c =	18	[mm]	Raggio di raccordo della sezione della colonna
$A_c =$	64,30	[cm ²]	Area della sezione della colonna
$I_{yc} =$	5410,00	[cm ⁴]	Momento di inerzia della sezione della colonna
Materiale	: S 2	275	
$f_{yc} =$	275,00	[MPa]	Resistenza
$f_{uc} =$	430,00	[MPa]	Limite di resistenza del materiale
Plinto del	la colonna		

I _{pd} =	300	[mm]	Lunghezza	
$b_{pd} =$	230	[mm]	Larghezza	
$t_{pd} =$	17	[mm]	Spessore	
Material	e:	S 275		
$f_{ypd} =$	275,00	[N	MPa] Resistenza	
$f_{upd} =$	430,00	[N	IPa] Limite di resistenza del materiale	
Ancorage	gio			
Il piano d	li taglio att	raversa la par	te NON FILETTATA del bullone.	
Classe =	8.8		Classe di ancoraggi	
$f_{yb} =$	640,00	[MPa]	Limite di plasticità del materiale del bullone	
f _{ub} =	800,00	[MPa]	Resistenza del materiale del bullone alla trazione	
d =	20	[mm]	Diametro del bullone	
A _s =	2,45	[cm ²]	Area della sezione efficace del bullone	
A _v =	3,14	[cm ²]	Area della sezione del bullone	
n _v =	2		Numero di colonne dei bulloni Numero di file di bulloni	
n _н = е _н =	190	[mm]	Distanza orizzontale	
е _v =	150	[mm]	Distanza verticale	
	oni di anco		Distanza Verticale	
L ₁ =	100	[mm]		
L ₂ =	500	[mm]		
Rondella		[]		
l _{wd} =	80	[mm]	Lunghezza	
b _{wd} =	60	[mm]	Larghezza	
t _{wd} =	20	[mm]	Spessore	
	nti di mate		·	
g _{M0} =	1,00		Coefficiente di sicurezza parziale	
g _{M2} =	1,25		Coefficiente di sicurezza parziale	
g _C =	1,50		Coefficiente di sicurezza parziale	
Plinto di	fondazione	9		
L =	600	[mm]	Lunghezza del plinto	
B =	900	[mm]	Larghezza del plinto	
H =	2000	[mm]	Altezza del plinto	
Calcestru				
Classe		C28/35		
f _{ck} =	35,00	[MF	Pa] Resistenza caratteristica alla compressione	
	sigillatura			
t _g =	30	[mm]	Spessore del getto di sigillatura	
t _{ck,g} =	12,00	[MPa]	Resistenza caratteristica alla compressione	
C _{f,d} =	0,30		Coeff. di attrito tra la piastra di base e il calcestruzzo	
Saldatur				
_		[]	Disease esimple del eliete delle colone	
a _p =	10	[mm]	Piastra principale del plinto della colonna	
Carichi	10	[mm]		
Carichi Condizio	10 ne		Calcolo manuale.	
Carichi Condizio N _{j,Ed} =	10	[mm] [kN]		
Carichi Condizio N _{j,Ed} = Risultati	10 ne 60,00		Calcolo manuale.	
Carichi Condizio N _{j,Ed} = Risultati Zona in t	10 ne 60,00 razione	[kN]	Calcolo manuale. Azione assiale	
Carichi Condizio N _{J,Ed} = Risultati Zona in t	10 ne 60,00 razione A DEL BULI	[kN]	Calcolo manuale. Azione assiale PRAGGIO	
Carichi Condizio N _{J,Ed} = Risultati Zona in t ROTTUR A _b =	ne 60,00 razione A DEL BULI 2,45	[kN] LONE D'ANCO [cm²]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone	[Tabella 3.4]
Carichi Condizio $N_{j,Ed} =$ Risultati Zona in t ROTTUR $A_b =$ $f_{ub} =$	10 ne 60,00 razione A DEL BULI 2,45 800,00	[kN]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione	[Tabella 3.4]
Carichi Condizio $N_{J,Ed} =$ Risultati Zona in t ROTTUR $A_b =$ $f_{ub} =$ Beta =	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85	[kN] LONE D'ANCO [cm²] [MPa]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone	
Carichi Condizio $N_{J,Ed} =$ Risultati Zona in t ROTTUR $A_b =$ $f_{ub} =$ Beta = $F_{t,Rd,s1} = b$	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85 peta*0.9*fu	[kN] LONE D'ANCO [cm²] [MPa] b*Ab/g _{M2}	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione Coefficiente di riduzione della resistenza del bullone	[Tabella 3.4] [3.6.1.(3)]
Carichi Condizio $N_{j,Ed} =$ Risultati Zona in t $ROTTUR$ $A_b =$ $f_{ub} =$ $Beta =$ $F_{t,Rd,s1} =$ $E_{t,Rd,s1} =$	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85 peta*0.9*fu 119,95	[kN] LONE D'ANCO [cm²] [MPa]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione Coefficiente di riduzione della resistenza del bullone Resistenza del bullone alla rottura	[Tabella 3.4] [3.6.1.(3)] [Tabella 3.4]
Carichi Condizio $N_{j,Ed} =$ Risultati Zona in t ROTTUR $A_b =$ $f_{ub} =$ Beta = $F_{t,Rd,s1} = b$ $F_{t,Rd,s1} =$ $g_{Ms} =$	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85 peta*0.9*fu 119,95 1,20	[kN] LONE D'ANCO [cm²] [MPa] b*Ab/gm2 [kN]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione Coefficiente di riduzione della resistenza del bullone Resistenza del bullone alla rottura Coefficiente di sicurezza parziale	[Tabella 3.4] [3.6.1.(3)] [Tabella 3.4] CEB [3.2.3.2]
Carichi Condizio $N_{j,Ed} =$ Risultati Zona in t ROTTUR $A_b =$ $f_{ub} =$ Beta = $F_{t,Rd,s1} = b$ $F_{t,Rd,s1} =$ $g_{Ms} =$ $f_{yb} =$	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85 peta*0.9*fu 119,95 1,20 640,00	[kN] LONE D'ANCO [cm²] [MPa] b*Ab/g _{M2}	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione Coefficiente di riduzione della resistenza del bullone Resistenza del bullone alla rottura	[Tabella 3.4] [3.6.1.(3)] [Tabella 3.4]
Carichi Condizio $N_{j,Ed} =$ Risultati Zona in t ROTTUR $A_b =$ $f_{ub} =$ Beta = $F_{t,Rd,s1} = t$ $g_{Ms} =$ $f_{yb} =$ $F_{t,Rd,s2} = f_{t,Rd,s2} = f_{t,Rd,s3} =$	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85 peta*0.9*fu 119,95 1,20 640,00 v _b *A _b /g _{Ms}	[kN] LONE D'ANCO [cm²] [MPa] b*Ab/gm² [kN] [MPa]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione Coefficiente di riduzione della resistenza del bullone Resistenza del bullone alla rottura Coefficiente di sicurezza parziale Limite di plasticità del materiale del bullone	[Tabella 3.4] [3.6.1.(3)] [Tabella 3.4] CEB [3.2.3.2] CEB [9.2.2]
Carichi Condizio $N_{j,Ed} =$ Risultati Zona in t ROTTUR: $A_b =$ $f_{ub} =$ Beta = $F_{t,Rd,s1} =$ $g_{Ms} =$ $f_{yb} =$ $F_{t,Rd,s2} =$ $f_{t,Rd,s2} =$ $f_{t,Rd,s2} =$	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85 peta*0.9*fu 119,95 1,20 640,00 y ₀ *A _b /g _{Ms} 130,67	[kN] LONE D'ANCO [cm²] [MPa] b*Ab/gm² [kN] [MPa]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione Coefficiente di riduzione della resistenza del bullone Resistenza del bullone alla rottura Coefficiente di sicurezza parziale	[Tabella 3.4] [3.6.1.(3)] [Tabella 3.4] CEB [3.2.3.2]
Carichi Condizio $N_{j,Ed} =$ Risultati Zona in t ROTTUR: $A_b =$ $f_{ub} =$ Beta = $F_{t,Rd,s1} =$ $g_{Ms} =$ $f_{yb} =$ $F_{t,Rd,s2} =$ $f_{t,Rd,s2} =$ $f_{t,Rd,s2} =$	10 ne 60,00 razione A DEL BULI 2,45 800,00 0,85 peta*0.9*fu 119,95 1,20 640,00 v _b *A _b /g _{Ms}	[kN] LONE D'ANCO [cm²] [MPa] b*Ab/gm² [kN] [MPa]	Calcolo manuale. Azione assiale PRAGGIO Area efficace del bullone Resistenza del materiale del bullone alla trazione Coefficiente di riduzione della resistenza del bullone Resistenza del bullone alla rottura Coefficiente di sicurezza parziale Limite di plasticità del materiale del bullone	[Tabella 3.4] [3.6.1.(3)] [Tabella 3.4] CEB [3.2.3.2] CEB [9.2.2]

Resistenza caratteristica del calcestruzzo alla compressione EN 1992-1:[3.1.2]

[MPa]

35,00

STRAPPO DEL BULLONE DI ANCORAGGIO DAL CALCESTRUZZO

	$f_{ctd} = 0.7*$	$0.3*f_{ck}^{2/3}/g_{C}$			
		_	Resistenz	a di calcolo alla trazione	EN 1992-1:[8.4.2.(2)]
	h ₁ = 1,	,00	Coeff. dip	endente dalle condizioni del getto di calcestruzzo e dell'ader	enza EN 1992-1:[8.4.2.(2)]
	•		Coeff. dip	endente dal diametro barra	EN 1992-1:[8.4.2.(2)]
Nemax			[MDa]	Adoronza di calcolo ammissibile	EN 1002 1:[0 4 2 /2)]
Final					
TRASPP UEL CONCESTUZO STRASPPO DEL CONCESTUZO Na PPO DEL CONCESTUZO Na PPO STON PS (PIRMIN 1974 the Indicator Name) Na PPO STON PS (PIRMIN 1974 the Indicator Name) STON PS (PIRMIN 1974 the Indicator Name) Name 2			[]	Editalicaza emedec del ballone di ancordaggio	LIV 1332 1.[0.4.2.(2)]
Name 1			[kN]	Resistenza di calc. per il sollevamento	EN 1992-1:[8.4.2.(2)]
Nat. Part 175, Part	STRAPPO	DEL CONO I	DEL CALCESTRU	JZZO	
Name	h _{ef} =	250	[mm]	Lunghezza efficace del bullone di ancoraggio	CEB [9.2.4]
Sept 750	$N_{Rk,c}^{0} = 7.5$	5[N ^{0.5} /mm ^{0.5}]	$ *f_{ck}*h_{ef}^{1.5}$		
Cay, No. 375 Mml Memalo (Derina) Action (Derina) CEB [9.2.4] Action 8400,00 Cmm² Acrea massima del cono CEB [9.2.4] YAN = No.XIV-Xuvus 15400,00 Cmm² Acrea meassima del cono CEB [9.2.4] YAN = No.XIV-Xuvus Cofé di pendente dall'interasse dell'ancoraggio dal bordo CEB [9.2.4] YAN = No.XIV (Zuvus Turus Turus) Distanza minima dell'ancoraggio dal bordo CEB [9.2.4] YAN = No.XIV (Zuvus Turus Turus) Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.4] YAN = No.XIV (Zuvus Turus Turus) Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.4] YAN = No.XIV (Zuvus Turus Turus Turus Turus Turus Della fondazione CEB [9.2.4] YAN = No.XIV (Zuvus Turus Turus Turus Turus Turus Turus Della fondazione CEB [9.2.4] YAN = No.XIV (Zuvus Turus Turus Turus Turus Turus Della fondazione CEB [9.2.4] YAN = No.XIV (Zuvus Turus Turus Turus Turus Turus Turus Della fondazione CEB [9.2.4] YAN = No.XIV (Zuvus Turus T		-			
A_m				_	
Acut					
Y _{N,N} = A _{1,N} /A _{2,N} V _{N,N} = 0.64 Coeff. dipendente dall'interasse dell'ancoraggio e dalla distanza dal bordo EB [9.2.4] V _{N,N} = 0.86 Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.4] V _{N,N} = 0.05 + P ₁ P ₁ P ₁ P ₁ P ₁ P ₂ P ₂ P ₃					
Value Val			[CIII]	Area reale del cono	CLD [3.2.4]
c = 205 [mm] Distanza minima dell'ancoraggio dal bordo CEB [9.2.4] Y _{N,N} = 0.86 Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.4] Y _{N,N} = 1.00 Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.4] Y _{N,N} = 1.00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] Y _{N,N} = 1.00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] Y _{N,N} = 1.00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] Y _{N,N} = 1.00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] Y _{N,N} = 1.00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] Y _{N,N} = 2.16 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] Sez = 2.16 Coeff. dipendente dall'armatura della fondazione CEB [9.2.5] SPACCO DEL CALCESTRUZZO Lunghezza efficace del bullone di ancoraggio CEB [9.2.5] N _N ,0 = 3.60,88 [N] Resistenza di calco, per il sollevamento CEB [9.2.5] Sex = 1.00 [mm] Larghezza critica del cono del calcestruzzo CEB	•		Coeff. dip	pendente dall'interasse dell'ancoraggio e dalla distanza dal b	ordo CEB [9.2.4]
y _{No.N} = 1,00 Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.4] y _{No.N} = 1,00 Coeff. dipendente dalla ripartizione delle forze di trazione negli ancoraggi CEB [9.2.4] y _{No.N} = 1,00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] y _{No.N} = 1,00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] y _{No.N} = 2,16 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] P _{LNAZ} = No.C ²⁸ y _{No.N} *y _{No.N} *y _{No.N} *y _{No.N} *y _{No.N} *y _{No.N} y _{No.No.N} y _{No.N} y _{No.No.N} y _{No.No.No.No.No.No.No.Yy_{No.N}y_{No.No.No.Yy_{No.N}y_{No.No.N}y_{No.No.No.Yy_{No.N}y_{No.No.}}}}			-		
y _{ex,N} = 0.5 + h _{ex} (mm)/200 ≤ 1.0 Coeff. dipendente dalla ripartizione delle forze di trazione negli ancorasgi: CEB [9.2.4] y _{ex,N} = 1,00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] y _{ex,N} = 1,00 Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.4] y _{ex,N} = 1,16 Coeff. dipendente dal grado di fessurazione del calcestruzzo CEB [9.2.4] F _{iobla,C} = N _{ex,N} [*] y _{ex,N} *y _{ex,N} *y _{ex,N} *y _{ex,N} *y _{ex,N} *y _{ex,N} y	$y_{s,N} = 0.7 -$	+ 0.3*c/c _{cr.N} s	≤ 1.0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$y_{s,N} = 0$,	86	Coeff. dipe	endente dalla distanza dell'ancoraggio dal bordo della fonda	zione CEB [9.2.4]
	-			endente dalla ripartizione delle forze di trazione negli ancora	ggi CEB [9.2.4]
Y _{MCN} N = 1,00 Coeff. dipendente dal grado di fessurazione del calcestruzzo (EB [9.2.4] (g.k.e. = 2,16) CEB [3.2.3.1] F _{MAG.} = Na _{M.C.} ****Y _{M.N.***} *Y _{M.N.**} *Y _{MCN.**} *Y _{MCN.**} *Y _{MCN.**} Y _{MCN.**} Resistenza di calcolo dell'ancoraggio allo strappo del cono del calcestruzzo EN 1992-1:[8.4.2.(2]) SPACCO TEL CALCESTRUZZO he = 500 [mm] Lunghezza efficace del bullone di ancoraggio (EB [9.2.5]) Na _{N.C.*} **0 = 7,5[N**]/mm ^{Ca}]**fa.** ha.** Na _{N.C.*} **0 = 7,5[N**]/mm ^{Ca}]**fa.* ha.** Na _{N.C.*} **0 = 7,5[N**]/mm ^{Ca}]**fa.* ha.** Na _{N.C.*} **0 = 1,5[N**]/mm ^{Ca}]**fa.* ha.** Na _{N.C.*} *0 = 1,5[N**]/mm ^{Ca}]**fa.* ha.** Na _{N.C.*} 0 = 1,5[N**] Na ^{Ca}]**fa.* ha.** Na _{N.C.*} 0 = 1,5[N**] Na ^{Ca}]**fa.* ha.** <td></td> <td></td> <td></td> <td></td> <td></td>					
Section Sec				·	
F _{LBLZ} = MoxL ^{20*} Y _A An ^{3*} Y _A An ^{3*} Y _A An ^{3*} Y _A CAn ^{3*} Y	-				
Fi.nd.c. = 44,78	•	•		•	CEB [3.2.3.1]
SPACCU SUCUSURUS harf = \$00 mm] Lunghezza efficace del bullone di ancoraggio CEB [9.2.5] Nax,c = \$7.5 No.5/mm0.3 Fa.* harf. 3 Vanta di Nax. Scrix = 496,08 [kN] Resistenza di calc. per il sollevamento CEB [9.2.5] Ccz N = 500 mm] Distanza critica dal bordo della fondazione CEB [9.2.5] Ac,N0 = 5400,00 [cm²] Area massima del cono CEB [9.2.5] VA,N = \$400,00 [cm²] Area reale del cono CEB [9.2.5] VA,N = \$0.39 (cm²) Area reale del cono CEB [9.2.5] VA,N = \$0.39 (cm²) Area reale del cono CEB [9.2.5] VA,N = \$0.39 (cm²) Coeff. dipendente dall'interasse dell'ancoraggio e dalla distanza dall'astanza dell'ancoraggio e dalla distanza dall'astanza dell'ancoraggio e dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.5] V _{NA} = \$1.00 (coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.5] V _{NA} = \$1.00 (coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] CEB [9.2.5] V _{NA} = \$1.00 (coeff. dipendente dalla densità dell'ancoraggio					:uzzo FN 1992-1:[8.4.2.(2)]
here 500 [mm] Lunghezza efficace del bullone di ancoraggio CEB [9.2.5] Nav.cº = 7.5 [Nav.5] 7.5 [Nav.5] 1 (Nav.6) = 7.5 [a a calcolo dell'alleoraggio allo strappo del collo del calcesti	delo en 1552 1.[o. n.e.(2)]
$ N_{NS,C}^{0} = 7.5 [N^{0.5}/mm^{0.5}]^* f_{cx}^* h_{et}^{1.5}] $				Lunghezza efficace del bullone di ancoraggio	CEB [9.2.5]
Ninc, c					()
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Resistenza di calc. per il sollevamento	CEB [9.2.5]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S _{cr,N} =	1000	[mm]	Larghezza critica del cono del calcestruzzo	CEB [9.2.5]
$A_{c,N} =$ $5400,00$ $[cm^2]$ Area reale del conoCEB [9.2.5] $y_{A,N} = A_{c,N}/A_{c,NO}$ $y_{A,N} = 0.39$ Coeff. dipendente dall'interasse dell'ancoraggio e dalla distanza dal bordo CEB [9.2.5] $y_{S,N} = 0.7 + 0.3 * c/c_{c,r.N} \le 1.0$ Distanza minima dell'ancoraggio dal bordoCEB [9.2.5] $y_{S,N} = 0.82$ Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.5] $y_{c,N} = 1.00$ Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.5] $y_{c,N} = 0.5 + h_{ef} [mm]/200 \le 1.0$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{ucr,N} = 0.5 + h_{ef} [mm]/201 \le 1.0$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{ucr,N} = 0.5 + h_{ef} [mm]/201 \le 1.0$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \le 1.2$ Resistenza di calcolo dell'ancoraggio allo spacco del calcestruzzo CEB [9.2.5] $y_{h,N} = (h/(2*h_{eh}))^{2/3} \ge 1.2$ Res	C _{cr,N} =	500	[mm]	Distanza critica dal bordo della fondazione	CEB [9.2.5]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $., .				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			[cm ²]	Area reale del cono	CEB [9.2.5]
C =205[mm]Distanza minima dell'ancoraggio dal bordoCEB [9.2.5] $y_{s,N} = 0.7 + 0.3 * c/c_{cr.N} \le 1.0$ Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.5] $y_{es,N} = 0.7 + 0.3 * c/c_{cr.N} \le 1.00$ Coeff. dipendente dalla ripartizione delle forze di trazione negli ancoraggi CEB [9.2.5] $y_{re,N} = 0.5 + h_{ef}[mm]/200 \le 1.0$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{re,N} = 1.00$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{rh,N} = (h/(2*h_{ef}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Resistenza di calcolo dell'ancoraggio alla trazione CEB [9.2.5] $y_{h,N} = 1.20$ Resistenza della discurezza parciale CEB [9.2.5] $y_{h,N} = 1.20$ Resistenza efficace per un bullone per il modo 1 [6.2.6.5] $y_$	•		Cooff dir	anndanta dall'interessa dall'ancorposia a dalla distanza dal la	arda CED [O 2 E]
$y_{S,N} = 0.7 + 0.3 * c/c_{cr.N} \le 1.0$ $y_{S,N} = 0.82$ Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.5] $y_{CN} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dalla ripartizione delle forze di trazione negli ancoraggi CEB [9.2.5] $y_{CN} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{UCT,N} = 0.1,00$ Coeff. dipendente dall grado di fessurazione del calcestruzzo CEB [9.2.5] $y_{N,N} = (h/(2*her))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \le 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \ge 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \ge 1.0$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{N,N} = 0.5 + her[mm]/200 \ge 1.0$ Resistenza dell'ancoraggio alla trazione CEB [9.2.5]RESISTENZA DELL'ANCORAGGIO ALLA TRAZIONE P. (N. M. S.) Resistenza dell'ancoraggio alla trazione CEB [9.2.6.5] $y_{N,N} = 0.5 + her[mm]/200 \ge 1.0$ Resistenza dell'ancor	•			55	• •
$y_{s,N} = 0.82$ Coeff. dipendente dalla distanza dell'ancoraggio dal bordo della fondazione CEB [9.2.5] $y_{ec,N} = 1.00$ Coeff. dipendente dalla ripartizione delle forze di trazione negli ancoraggi CEB [9.2.5] $y_{re,N} = 0.5 + hef[mm]/200 \le 1.0$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{re,N} = 1.00$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{h,N} = (h/(2*hef))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{h,N} = 1.20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $g_{M,sp} = 0.2.16$ Coefficiente di sicurezza parziale CEB [9.2.5] $F_{LR,d,sp} = N_{Rk,c}^{0*} Y_{N,N}^{N} Y_{s,N}^{*} Y_{yec,N}^{*} Y_{yec,N}^{*} Y_{yec,N}^{*} Y_{h,N}/g_{M,sp}$ $F_{LR,d,sp} = N_{Rk,c}^{0*} Y_{N,N}^{N} Y_{s,N}^{*} Y_{yec,N}^{*} Y_{yec,N}^{*} Y_{h,N}/g_{M,sp}$ $F_{LR,d,sp} = N_{Rk,c}^{0*} Y_{N,N} Y_{s,N}^{*} Y_{yec,N}^{*} Y_{yec,N}^{*} Y_{h,N}/g_{M,sp}$ $F_{LR,d,sp} = N_{Rk,c}^{0*} Y_{s,N} Y_{s,N}^{*} Y_{s,c,N}^{*} Y_{s,c$				minima den ancoraggio dai bordo	CEB [9.2.5]
$y_{ec,N} = 1,00$ Coeff. dipendente dalla ripartizione delle forze di trazione negli ancoraggiCEB [9.2.5] $y_{re,N} = 0.5 + h_{ef}[mm]/200 \le 1.0$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{re,N} = 1,00$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{rh,N} = (h/(2*h_{ef}))^{2/3} \le 1.2$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{rh,N} = 1,20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $y_{rh,N} = 2,16$ Coefficiente di sicurezza parziale CEB [3.2.3.1] $t_{rh,Rd,sp} = N_{rh,c}0*y_{rh,N}*y_{re,N}*y_{re,N}*y_{re,N}*y_{re,N}*y_{rh,N}/g_{M,sp}$ $t_{rh,Rd,sp} = N_{rh,c}0*y_{rh,N}*y_{sh}*y_{sh}*y_{sh}*y_{re,N}*y_{re,N}*y_{rh,N}/g_{M,sp}$ $t_{rh,Rd,sp} = N_{rh,Rd,sp} = N_{rh,Rd,sp}*y_{rh,N} = N_{rh,Rd,sp}*y_{r$				endente dalla distanza dell'ancoraggio dal bordo della fonda.	zione CEB [9.2.5]
$y_{re,N} = 0.5 + hef[mm]/200 \le 1.0$ $y_{re,N} = 1,00$ Coeff. dipendente dalla densità dell'armatura della fondazione CEB [9.2.5] $y_{ucr,N} = 1,00$ Coeff. dipendente dal grado di fessurazione del calcestruzzo CEB [9.2.5] $y_{h,N} = (h/(2*hef))^{2/3} \le 1.2$ $y_{h,N} = 1,20$ Coeff. dipendente dall'altezza della fondazione CEB [9.2.5] $g_{M,sp} = 2,16$ Coefficiente di sicurezza parziale CEB [3.2.3.1] $F_{t,Rd,sp} = N_{Rk,c}^{0*}y_{A,N}*y_{s,N}*y_{ec,N}*y_{re,N}*y_{ucr,N}*y_{h,N}/g_{M,sp}}$ $F_{t,Rd,sp} = 89,50$ [kN] Resistenza di calcolo dell'ancoraggio allo spacco del calcestruzzo CEB [9.2.5] $RESISTENZA$ DELL'ANCORAGGIO ALLA TRAZIONE $F_{t,Rd} = \min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$ $F_{t,Rd} = \min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$ $F_{t,Rd} = 284$ [kN] Resistenza dell'ancoraggio alla trazione $F_{t,Rd} = 284$ [mm] Lunghezza efficace per un bullone per il modo 1 [6.2.6.5] $I_{eff,2} = 284$ [mm] Lunghezza efficace per un bullone per il modo 2 [6.2.6.5] $I_{eff,2} = 360$ [mm] Distanza del bullone dal bordo di irrigidimento [6.2.6.5] $I_{eff,2} = 5,65$ [kN*m] Resistenza plastica della piastra per il modo 1 [6.2.4] $I_{eff,2} = 375,67$ [kN] Resistenza della piastra per il modo 2 [6.2.4] $I_{eff,2} = 375,67$ [kN] Resistenza della piastra per il modo 2 [6.2.4]	• •		•	55	• •
$y_{ucr,N} = 1,00$ Coeff. dipendente dal grado di fessurazione del calcestruzzoCEB [9.2.5] $y_{h,N} = (h/(2*het))^{2/3} \le 1.2$ $y_{h,N} = 1,20$ Coeff. dipendente dall'altezza della fondazioneCEB [9.2.5] $g_{M,Sp} = 2,16$ Coefficiente di sicurezza parzialeCEB [3.2.3.1] $F_{t,Rd,Sp} = N_{Rk,c}0*Y_{A,N}*Y_{S,N}*Y$	•				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	y _{re,N} =	1,00	(Coeff. dipendente dalla densità dell'armatura della fondazion	ne CEB [9.2.5]
$\begin{array}{llllllllllllllllllllllllllllllllllll$	=			Coeff. dipendente dal grado di fessurazione del calcestruzzo	CEB [9.2.5]
$\begin{array}{llllllllllllllllllllllllllllllllllll$.2		
$ F_{t,Rd,sp} = N_{Rk,c}^{0*} y_{A,N} * y_{s,N} * y_{ec,N} * y_{re,N} * y_{ucr,N} * y_{h,N}/g_{M,sp} $ $ F_{t,Rd,sp} = 89,50 [kN] \text{Resistenza di calcolo dell'ancoraggio allo spacco del calcestruzzo CEB [9.2.5]} $ $ \textbf{RESISTENZA DELL'ANCORAGGIO ALLA TRAZIONE} $ $ F_{t,Rd} = \min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp}) $ $ F_{t,Rd} = 44,78 [kN] \text{Resistenza dell'ancoraggio alla trazione} $ $ \textbf{FLESSIONE DELLA PIASTRA DI BASE} $ $ l_{eff,1} = 284 [mm] \text{Lunghezza efficace per un bullone per il modo 1} [6.2.6.5] $ $ l_{eff,2} = 284 [mm] \text{Lunghezza efficace per un bullone per il modo 2} [6.2.6.5] $ $ m = 60 [mm] \text{Distanza del bullone dal bordo di irrigidimento} [6.2.6.5] $ $ M_{pl,1,Rd} = 5,65 [kN*m] \text{Resistenza plastica della piastra per il modo 1} [6.2.4] $ $ M_{pl,2,Rd} = 5,65 [kN*m] \text{Resistenza plastica della piastra per il modo 2} [6.2.4] $ $ F_{T,1,Rd} = 375,67 [kN] \text{Resistenza della piastra per il modo 1} [6.2.4] $ $ F_{T,2,Rd} = 148,60 [kN] \text{Resistenza della piastra per il modo 2} [6.2.4] $					• •
Ft_Rd,sp = 89,50 [kN] Resistenza di calcolo dell'ancoraggio allo spacco del calcestruzzo CEB [9.2.5]RESISTENZA DELL'ANCORAGGIO ALLA TRAZIONE $F_{t,Rd} = \min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$ Resistenza dell'ancoraggio alla trazioneFLESSIONE DELLA PIASTRA DI BASE $l_{eff,1} =$ 284 [mm]Lunghezza efficace per un bullone per il modo 1 [6.2.6.5] $l_{eff,2} =$ 284 [mm]Lunghezza efficace per un bullone per il modo 2 [6.2.6.5] $m =$ 60 [mm]Distanza del bullone dal bordo di irrigidimento [6.2.6.5] $M_{pl,1,Rd} =$ 5,65 [kN*m]Resistenza plastica della piastra per il modo 1 [6.2.4] $M_{pl,2,Rd} =$ 5,65 [kN*m]Resistenza plastica della piastra per il modo 1 [6.2.4] $F_{T,1,Rd} =$ 375,67 [kN]Resistenza della piastra per il modo 1 [6.2.4] $F_{T,2,Rd} =$ 148,60 [kN]Resistenza della piastra per il modo 2 [6.2.4]				-	CEB [3.2.3.1]
RESISTENZA DELL'ANCORAGGIO ALLA TRAZIONE $F_{t,Rd} = min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$ Resistenza dell'ancoraggio alla trazione $F_{t,Rd} = 44,78$ [kN] Resistenza dell'ancoraggio alla trazioneFLESSIONE DELLA PIASTRA DI BASE $l_{eff,1} = 284$ [mm] Lunghezza efficace per un bullone per il modo 1 [6.2.6.5] $l_{eff,2} = 284$ [mm] Lunghezza efficace per un bullone per il modo 2 [6.2.6.5] $m = 60$ [mm] Distanza del bullone dal bordo di irrigidimento [6.2.6.5] $M_{pl,1,Rd} = 5,65$ [kN*m] Resistenza plastica della piastra per il modo 1 [6.2.4] $M_{pl,2,Rd} = 5,65$ [kN*m] Resistenza plastica della piastra per il modo 2 [6.2.4] $F_{1,1,Rd} = 375,67$ [kN] Resistenza della piastra per il modo 1 [6.2.4] $F_{1,2,Rd} = 148,60$ [kN] Resistenza della piastra per il modo 2 [6.2.4]	_				70 CED [0 2 E]
$F_{t,Rd} = \min(F_{t,Rd,s}, F_{t,Rd,p}, F_{t,Rd,c}, F_{t,Rd,sp})$ $F_{t,Rd} = \begin{array}{ccccccccccccccccccccccccccccccccccc$			-		20 CLB [3.2.3]
F _{LRA} = 44,78 [kN]Resistenza dell'ancoraggio alla trazioneFLESSIONE DELLA PIASTRA DI BASE $l_{eff,1}$ = 284 [mm]Lunghezza efficace per un bullone per il modo 1 [6.2.6.5] $l_{eff,2}$ = 284 [mm]Lunghezza efficace per un bullone per il modo 2 [6.2.6.5] m = 60 [mm]Distanza del bullone dal bordo di irrigidimento [6.2.6.5] $M_{pl,1,Rd}$ = 5,65 [kN*m]Resistenza plastica della piastra per il modo 1 [6.2.4] $M_{pl,2,Rd}$ = 5,65 [kN*m]Resistenza plastica della piastra per il modo 2 [6.2.4] $F_{T,1,Rd}$ = 375,67 [kN]Resistenza della piastra per il modo 1 [6.2.4] $F_{T,2,Rd}$ = 148,60 [kN]Resistenza della piastra per il modo 2 [6.2.4]				A TRAZIONE	
FLESSIONE DELLA PIASTRA DI BASE $l_{eff,1} =$ 284[mm]Lunghezza efficace per un bullone per il modo 1[6.2.6.5] $l_{eff,2} =$ 284[mm]Lunghezza efficace per un bullone per il modo 2[6.2.6.5] $m =$ 60[mm]Distanza del bullone dal bordo di irrigidimento[6.2.6.5] $M_{pl,1,Rd} =$ 5,65[kN*m]Resistenza plastica della piastra per il modo 1[6.2.4] $M_{pl,2,Rd} =$ 5,65[kN*m]Resistenza plastica della piastra per il modo 2[6.2.4] $F_{T,1,Rd} =$ 375,67[kN]Resistenza della piastra per il modo 1[6.2.4] $F_{T,2,Rd} =$ 148,60[kN]Resistenza della piastra per il modo 2[6.2.4]				Resistenza dell'ancoraggio alla trazione	
$\begin{array}{llllllllllllllllllllllllllllllllllll$				2000 400 0 400	
$I_{eff,2}$ =284[mm]Lunghezza efficace per un bullone per il modo 2[6.2.6.5] $m =$ 60[mm]Distanza del bullone dal bordo di irrigidimento[6.2.6.5] $M_{pl,1,Rd}$ =5,65[kN*m]Resistenza plastica della piastra per il modo 1[6.2.4] $M_{pl,2,Rd}$ =5,65[kN*m]Resistenza plastica della piastra per il modo 2[6.2.4] $F_{T,1,Rd}$ =375,67[kN]Resistenza della piastra per il modo 1[6.2.4] $F_{T,2,Rd}$ =148,60[kN]Resistenza della piastra per il modo 2[6.2.4]				Lunghezza efficace per un bullone per il modo 1	[6.2.6.5]
$m =$ 60[mm]Distanza del bullone dal bordo di irrigidimento[6.2.6.5] $M_{pl,1,Rd} =$ 5,65[kN*m]Resistenza plastica della piastra per il modo 1[6.2.4] $M_{pl,2,Rd} =$ 5,65[kN*m]Resistenza plastica della piastra per il modo 2[6.2.4] $F_{T,1,Rd} =$ 375,67[kN]Resistenza della piastra per il modo 1[6.2.4] $F_{T,2,Rd} =$ 148,60[kN]Resistenza della piastra per il modo 2[6.2.4]					
$M_{pl,2,Rd} = 5,65$ [kN*m] Resistenza plastica della piastra per il modo 2 [6.2.4] $F_{T,1,Rd} = 375,67$ [kN] Resistenza della piastra per il modo 1 [6.2.4] $F_{T,2,Rd} = 148,60$ [kN] Resistenza della piastra per il modo 2 [6.2.4]				-	
$F_{T,1,Rd} = 375,67$ [kN] Resistenza della piastra per il modo 1 [6.2.4] $F_{T,2,Rd} = 148,60$ [kN] Resistenza della piastra per il modo 2 [6.2.4]	$M_{pl,1,Rd} =$	5,65			
F _{T,2,Rd} = 148,60 [kN] Resistenza della piastra per il modo 2 [6.2.4]	$M_{pl,2,Rd} =$	5,65	[kN*m]	Resistenza plastica della piastra per il modo 2	[6.2.4]
	$F_{T,1,Rd} =$	375,67	[kN]	Resistenza della piastra per il modo 1	[6.2.4]
F _{T,3,Rd} = 89,56 [kN] Resistenza della piastra per il modo 3 [6.2.4]			I. I		
	F _{T,3,Rd} =	89,56	[kN]	Kesistenza della piastra per il modo 3	[6.2.4]

$F_{t,pl,Rd} = m$	nin(F _{T,1,Rd} , F _{T,2}	_{2,Rd} , F _{T,3,Rd})				
$F_{t,pl,Rd} =$	89,56	[kN]	Resistenza della pi	astra in trazione	[6.2.4]	
RESISTEN	IZA DELL'AN	IMA DELLA COI	LONNA ALLA TRAZIO	NE		
$t_{wc} =$	7	[mm]	Spessore efficace of	dell'anima della colonna	[6.2.6.3.(8)]	
$b_{eff,t,wc} =$	284	[mm]	Larghezza efficace	dell'anima in trazione	[6.2.6.3.(2)]	
$A_{vc} =$	20,63	[cm ²]	Area al taglio		EN1993-1-1	:[6.2.6.(3)]
w =	0,67		Coefficiente di ridu	ızione per l'interazione con il taglio	[6.2.6.3.(4)]	
$F_{t,wc,Rd} = v$	v b _{eff,t,wc} t _{wc} f _y	с/ gмо				
$F_{t,wc,Rd} =$	368,27	[kN]	Resistenza dell'ani	ma della colonna	[6.2.6.3.(1)]	
RESISTEN	IZA DEL PLIN	TO NELLA ZON	A IN TRAZIONE			
$N_{j,Rd} =$	179,12	[kN]	Resistenza del plin	to alla trazione assiale	[6.2.8.3]	
Controllo	della resiste	nza del giunto				
$N_{j,Ed} / N_{j,F}$	$t_{td} \le 1,0 \ (6.24)$	1		0,33 < 1,00	verificato	(0,33)
Saldature	e tra la colon	na e la piastra d	della base			
S^ =	3,42	[MPa]	Sollecitazione norr	nale nella saldatura	[4.5.3.(7)]	
t^ =	3,42	[MPa]	Sollecitazione tang	enziale perpendicolare	[4.5.3.(7)]	
$t_{yII} =$	0,00	[MPa]	Sollecitazione tang	enziale parallela a V _{j,Ed,y}	[4.5.3.(7)]	
$t_{zII} =$	0,00	[MPa]	Sollecitazione tang	enziale parallela a V _{j,Ed,z}	[4.5.3.(7)]	
b _w =	0,85		Coefficiente dovut	o alla resistenza	[4.5.3.(7)]	
s _^ / (0.9*	$f_u/g_{M2})) \leq 1.0$	(4.1)		0,01 < 1,00	verificato	(0,01)
$\ddot{O}(s^2 + 3.$	$0 (t_{yII}^2 + t_{^2}))$	$/ (f_u/(b_W*g_{M2})))$	≤ 1.0 (4.1)	0,02 < 1,00	verificato	(0,02)
$\ddot{O}(s^2 + 3.$	$0 (t_{z 1}^2 + t_{^2}))$	$/ (f_u/(b_W*g_{M2})))$	≤ 1.0 (4.1)	0,02 < 1,00	verificato	(0,02)

Il componente più debole:

FONDAZIONE ALLO STRAPPO DEL CONO DEL CALCESTRUZZO

Note

Distanza del bullone di ancoraggio dal rialzo della colonna troppo piccola.

Giunto conforme alla norma Coefficiente 0,33